【读书2】【2014】基于MATLAB的雷达信号处理基础(第二版)——Swerling模型(1)

2.2.7. Swerling模型

2.2.7. Swerling Models

利用目标RCS起伏和非相干积累的四种Swerling模型建立了广泛的雷达探测理论体系。

An extensive body ofradar detection theory has been built up using the four Swerling models oftarget RCS fluctuation and noncoherent integration (Swerling, 1960; Meyer andMayer, 1973; Nathanson, 1991; Skolnik, 2001).

它们由四种组合构成,其中两种是PDF,另两种是相关特性。

They are formed fromthe four combinations of two choices for the PDF and two for the correlationproperties.

使用的两种密度函数是指数函数和四自由度的chi-square函数(见表2.3)。

The two density functionsused are the exponential and the chi-square of degree 4 (see Table 2.3).

指数模型描述了由许多散射体组成的复杂目标的行为,但这些散射体都不会起主导作用。

The exponential modeldescribes the behavior of a complex target consisting of many scatterers, noneof which is dominant.

四自由度的chi-square模型则是由许多散射强度相似的散射体构成,但其中包括一个主要的散射体。

The fourth-degreechi-square model targets having many scatterers of similar strength with onedominant scatterer.

尽管Rice分布是上述情况下的精确PDF,但chi-square分布是匹配一阶矩和二阶矩的近似函数。

Although the Ricedistribution is the exact PDF for this case, the chi-square is an approximationbased on matching the first two moments of the two PDFs (Meyer and Mayer,1973).

当主散射体RCS是所有小散射体RCS之和的倍时,这些矩参数是匹配的,因此四自由度chi-square模型最适合这种情况。

These moments matchwhen the RCS of the dominant scatterer is times that of the sumof the RCS of the small scatterers, so the fourth-degree chi-square model fitsbest for this case.

更一般的情况,自由度为2m = 1 + [a2/(1 + 2a)]的chi-square分布是Rice分布的最佳近似,其中a2为主散射体与所有小散射体之和的比值。

More generally, achi-square of degree 2m = 1 + [a2/(1+ 2a)] is a good approximationto a Rice distribution with a ratio of a2 of the dominant scattererto the sum of the small scatterers.

然而,只有四自由度chi-square分布这种特殊函数才被考虑为Swerling模型。

However, only thespecific case of the fourth-degree chi-square is considered a Swerling model.

Swerling模型又分为“Swerling 1”、“Swerling 2”等等。

The Swerling modelsare denoted as “Swerling 1,” “Swerling 2,” and so forth.

表2.5定义了4种情况。

Table 2.5 defines thefour cases.

【读书2】【2014】基于MATLAB的雷达信号处理基础(第二版)——Swerling模型(1)_第1张图片

有时候也将非起伏模型表示为"Swerling 0"或"Swerling 5"模型。

A nonfluctuatingtarget is sometimes identified as the “Swerling 0” or “Swerling5” model.

图2.17和2.18描述了两种Swerling模型的行为差异。

Figures 2.17 and 2.18illustrate the difference in the behavior of two of the Swerling models.

【读书2】【2014】基于MATLAB的雷达信号处理基础(第二版)——Swerling模型(1)_第2张图片

Figure 2.17. 三次扫描或CPI,每次扫描包含10个采样样本,样本功率为单位均值的Swerling 1模型Three scans or CPIs, each having10 samples of a unit mean Swerling 1 power sequence.

——本文译自Mark A. Richards所著的《Fundamentals of Radar Signal Processing(Second edition)》

更多精彩文章请关注微信号:【读书2】【2014】基于MATLAB的雷达信号处理基础(第二版)——Swerling模型(1)_第3张图片

你可能感兴趣的:(【读书2】【2014】基于MATLAB的雷达信号处理基础(第二版)——Swerling模型(1))