- 内存泄漏系列专题分析之二十九:高通相机CamX--Android通用GPU内存分配和释放原理
一起搞IT吧
内存泄漏和内存占用拆解系列专题数码相机android图像处理
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:这一篇我们开始讲:内存泄漏系列专题分析之二十九:高通相机CamX--Android通用GPU内存分配和释放原理目录一、背景二、:Android通用GPU内存分配和释放原理2.1:用户态GPU内存分配2.2:内核态GPU内存分配2.3:kgslioctlgpumemalloc分析2.4:gpumemallocentry分析2.5:内核态GP
- Camera相机人脸识别系列专题分析之十:人脸特征检测FFD算法之低功耗libvega_face.so人脸识别检测流程详解
一起搞IT吧
数码相机算法计算机视觉深度学习图像处理android人工智能
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:Camera相机人脸识别系列专题分析之九:MTK平台FDNode三方FFD算法dump、日志开关、bypass、resize及强制不同三方FFD切换等客制化这一篇我们开始讲:Camera相机人脸识别系列专题分析之十:人脸特征检测FFD算法之低功耗libvega_face.so人脸识别检测流程详解目录一、背景二、:FFD算法libvega_
- Camera相机人脸识别系列专题分析之十五:人脸特征检测FFD算法之libcvface_api.so算法API详细注释解析
一起搞IT吧
数码相机android人工智能图像处理计算机视觉算法
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:这一篇我们开始讲:Camera相机人脸识别系列专题分析之十五:人脸特征检测FFD算法之libcvface_api.so算法API详细注释解析目录一、libcvface_api.so算法API详细注释解析<
- 2022-8-10晨间日记
面前大海
今天是什么日子起床:6:00就寝:22:00天气:阴心情:平静纪念日:大娘去逝三周年任务清单昨日完成的任务,最重要的三件事:与小儿子共同通篇背诵会《阿房宫赋》;早起锻炼1小时;练字1小时。改进:日更字数及质量。习惯养成:早起锻炼、练字、阅读。周目标·完成进度读完《苏东坡》、与小儿子共同背会《赤壁赋》。完成“教师暑假培训专题”学习·信息·阅读完成书恒朗读营培训内容;完成学习强国学习任务;健康·饮食·
- Python在股票数据分析中的应用,如何通过代码实现精准预测股价走势?
股票程序化交易接口
量化交易股票API接口Python股票量化交易数据分析python股票数据分析股价走势预测代码实现股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>数据获取与导入在股票数据分析中,首先要获取相关数据。Python有许多库可实现这一功能,比如pandas-datareader。使用它可以轻松从知名数据源如雅虎财经获取股票的历史价格、成交量等数据。只需简单几行代码,就能将特定股票在特
- 第二届睡眠脑电专题班(直播:2023.5.13~5.14)
茗创科技
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★睡眠占据了人生命的三分之一,充足良好的睡眠也是健康不可或缺的条件之一。为什么有的人睡眠质量如此高?为什么有的人饱受
- NUS:LLM表格数据建模综述
标题:LanguageModelingonTabularData:ASurveyofFoundations,TechniquesandEvolution来源:arXiv,2408.10548摘要表格数据是一种跨领域的流行数据类型,由于其异构性和复杂的结构关系,带来了独特的挑战。在表格数据分析中实现高预测性能和鲁棒性对许多应用程序具有重大前景。受自然语言处理,特别是转换器架构的最新进展的影响,出现了
- 目标检测中的标签分配算法总结
北京地铁1号线
目标检测与图像处理人工智能
目标检测中的标签分配算法是训练过程中的一个核心环节,它决定了如何将标注好的真实目标框分配给模型预测出来的候选框(AnchorBoxes或Points),从而为这些候选框提供监督信号(正样本、负样本、忽略样本)。它的质量直接影响模型的学习效率和最终性能。简单来说,标签分配要解决的关键问题是:“哪些预测框应该负责学习哪些真实目标?”一、为什么标签分配如此重要?1.定义学习目标:它直接告诉模型哪些预测应
- 基于java的数据可视化的汽车消费分析系统设计与实现的详细项目实例
nantangyuxi
Javajava信息可视化汽车人工智能深度学习数据结构大数据
目录基她java她数据可视化她汽车消费分析系统设计她实她她详细项目实例...1项目背景介绍...1项目目标她意义...2数据整合她清洗...2她维度消费分析...2实时数据可视化展示...2用户行为预测她趋势分析...2系统她高可扩展她设计...2提升汽车产业决策效率...2强化用户交互体验...3数据安全她隐私保护...3项目挑战及解决方案...3海量数据处理她她能瓶颈...3她数据源异构整合难
- 基于蜣螂算法优化多头注意力机制的卷积神经网络结合双向长短记忆神经网络实现温度预测DBO-CNN-biLSTM-Multihead-Attention附matlab代码
matlab科研助手
神经网络算法cnn
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍温度预测在气象学、农业、能源等领域具有重要的应用价值。随着大数据和人工智能技术的快速发
- 网络安全态势感知模型 原理和架构及案例
hao_wujing
web安全架构安全
大家读完觉得有帮助记得关注和点赞!!!网络安全态势感知(NetworkSecuritySituationAwareness,NSSA)是通过多源数据融合、动态分析与预测,实现对网络环境安全状态的全局认知与风险预判的核心技术体系。其核心价值在于将碎片化威胁信息转化为可行动的防御策略,以下从原理、架构及典型案例三方面展开深度解析:一、核心原理:三层认知模型与动态融合1.Endsley三层模型10态势要
- K近邻算法【python】【sklearn】
weixin_44985842
python近邻算法sklearn
0定义K近邻算法(K-NearestNeighbors,KNN)是一种基于实例的监督学习算法,主要用于分类和回归任务。其核心思想是:在特征空间中,对于待预测的样本,找到与其距离最近的k个已知样本(“邻居”),根据这k个邻居的类别(分类任务)或属性值(回归任务)来决定该样本的预测结果,,常用欧氏距离公式:对于两个n维样本点xi=(xi1,xi2,...,xin)x_i=(x_{i1},x_{i2},
- 51c自动驾驶~合集10
#端到端任务说起端到端,每个从业者可能都觉得会是下一代自动驾驶量产方案绕不开的点!特斯拉率先吹响了方案更新的号角,无论是完全端到端,还是专注于planner的模型,各家公司基本都投入较大人力去研发,小鹏、蔚来、理想、华为都对外展示了其端到端自动驾驶方案,效果着实不错,非常有研究价值。为什么需要端到端?首先我们聊一下当前的主流自动驾驶方案,主要核心部分包括:感知模块、预测模块、规控模块。每个模块相对
- 51c自动驾驶~合集9
吃着火锅唱支歌
自动驾驶人工智能机器学习
#端到端1说起端到端,每个从业者可能都觉得会是下一代自动驾驶量产方案绕不开的点!特斯拉率先吹响了方案更新的号角,无论是完全端到端,还是专注于planner的模型,各家公司基本都投入较大人力去研发,小鹏、蔚来、理想、华为都对外展示了其端到端自动驾驶方案,效果着实不错,非常有研究价值。为什么需要端到端?首先我们聊一下当前的主流自动驾驶方案,主要核心部分包括:感知模块、预测模块、规控模块。每个模块相对独
- DataWhale 二月组队学习-深入浅出pytorch-Task04
-273.15K
DataWhale组队学习学习pytorch人工智能
一、自定义损失函数1.损失函数的作用与自定义意义在深度学习中,损失函数(LossFunction)用于衡量模型预测结果与真实标签之间的差异,是模型优化的目标。PyTorch内置了多种常用损失函数(如交叉熵损失nn.CrossEntropyLoss、均方误差nn.MSELoss等)。但在实际任务中,可能需要针对特定问题设计自定义损失函数,例如:处理类别不平衡问题(如加权交叉熵)实现特殊业务需求(如对
- 时序数据库选型避坑全攻略:IoTDB性能与成本双杀的秘密!
LCG元
数据库时序数据库iotdbjava
文章目录一、架构设计深度解析1.1IoTDB架构图谱1.2核心流程对比二、企业级实战代码2.1Python数据写入示例2.2TypeScript客户端实现2.3集群配置YAML三、性能对比分析四、生产部署方案4.1安全加固配置4.2安全策略实施五、技术前瞻分析5.1云原生演进路径5.2新型存储引擎预测六、技术图谱附录一、架构设计深度解析1.1IoTDB架构图谱数据写入协议适配层内存表管理持久化引擎
- 大模型在2型糖尿病性酮症预测及临床方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能python深度学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点二、2型糖尿病性酮症相关理论基础2.12型糖尿病性酮症概述2.1.1定义与发病机制2.1.2临床表现与危害2.1.3诊断标准与鉴别诊断2.2大模型技术原理及在医疗领域的应用潜力2.2.1大模型的基本原理和特点2.2.2在医疗领域的应用现状和优势三、大模型在2型糖尿病性酮症术前风险预测的应用3.1数据收集与预处理3.1.1数据来源3.1.2数据清
- 入门
勤学奋进小郎君
了解机器学习标签需要通过机器学习模型判断出的结果特征机器学习模型进行判断的条件(可以是很多的变量)模型机器学习判断的工具降低损失线性回归y=mx+b其中:y指的是温度(以摄氏度表示),即我们试图预测的值。m指的是直线的斜率。x指的是每分钟的鸣叫声次数,即输入特征的值。b指的是y轴截距。2018-10-31_155803.png但是这样会对一些样本有误差,而我们的目的就是得到将误差降到最低的模型降低
- 边缘智能革命:嵌入式机器学习如何让万物“思考”
万能小贤哥
机器学习人工智能
当智能手表精准识别你的健身动作,工业传感器预测设备故障于毫秒之间,农业传感器自动调节灌溉水量——这些并非科幻场景,而是嵌入式机器学习(EmbeddedMachineLearning,或TinyML)正在悄然重塑的现实。这场发生在设备边缘的智能革命,正将AI从云端的数据中心拉近到我们指尖的每一台设备中。一、嵌入式机器学习:定义与核心价值嵌入式机器学习是指在资源极端受限的微控制器(MCU)、微处理器(
- 预测导管原位癌浸润性复发的深度学习:利用组织病理学图像和临床特征
浪漫的诗人
论文深度学习人工智能
文章目录研究内容目的方法数据集模型开发模型训练与评估外部验证统计分析研究结果模型性能风险分层外部验证特征重要性原文链接原文献:Deeplearningforpredictinginvasiverecurrenceofductalcarcinomainsitu:leveraginghistopathologyimagesandclinicalfeatures研究背景【DCIS与IBC的关联】乳腺导管
- 习题4.3 解出比赛的实际名次
西蒙尼的马竞
c++算法开发语言
5位跳水高手将参加10m高台跳水决赛,有好事者让5人据实力预测比赛结果。A选手说:B第二,我第三。B选手说:我第二,E第四。C选手说:我第一,D第二。D选手说:C最后,我第三。E选手说:我第四,A第一。决赛成绩公布之后,每位选手的预测都只说对了一半,即一对一错。请编程解出比赛的实际名次。//************************************************//*Sou
- 【python库对比】路径专题 os.path和pathlib对比
尚未想好
python高频库对比python开发语言vscode
专栏收录:python高频库对比本专栏将持续更新在工程领域高频使用的python库之间的对比文章概览:简单介绍路径处理常用的python库及特点对比os.path和pathlib的异同结合代码示例说明两个库的差异.补充:os.path和pathlib高频使用接口见os.path和pathlib高频使用接口及示例1.简介Python中处理路径的库有很多,其中一些常用的包括:os.path模块:os.
- 法国诺曼底疫情指数超警戒线!网红专家神预测有无第2波疫情
法国话事姐
近日,德国威斯特法伦地区肉类联合加工厂Tönnies爆发集中感染事件。目前已接受新冠病毒检测的1160名员工中,约有730人检测结果呈阳性,感染比例高达三分之二!英国威尔士一处鸡肉加工厂18日也出现聚集性疫情,已有近百人确诊感染。不仅如此,法国诺曼底地区疫情也出现了反复。这一系列事件引发不少“第二波疫情”是否来临的担忧。法国是不是有点太松懈?法国卫生部门6月19日发布统计数据称,自5月启动“解封”
- GEV/POT/Markov/点过程/贝叶斯极值全解析;基于R语言的极值统计学
极值统计学就是专门研究自然界和人类社会中很少发生,然而发生之后有着巨大影响的极端现象的统计建模及分析方法;在水文、气象、环境、生态、保险和金融等领域都有着广泛的应用。专题一、独立假设下的极值统计建模主要内容包括:1.广义极值模型.2.极小值的处理.3.广义Pareto模型.4.第r大次序统计量建模.5.R语言中极值统计学包.6.实例操作1-2.(提供案例数据及代码)专题二、平稳时间序列的极值统计建
- 团队合作~3A
Haven_5b28
物流与生产没必要成为朋友,只需要达成可行的计划就行啦。均衡化生产的计划:1按产品系列划分的每月均衡化生产量非专用设备的利用率;2必要的劳动力;3成品和在制品(WIP)的目标库存目标的班次数量。精益供应链,直送方式订购相同的数量,才用相同频率,并在计划发生变更前及时通知,不留空挡。(一周确认的订单,剩下几周为预测表),减少wip停滞要求:1.坏消息第一,要优先报告2.顺序沟通,计划好安全库存3.人员
- 学习笔记(39):结合生活案例,介绍 10 种常见模型
宁儿数据安全
#机器学习学习笔记生活
学习笔记(39):结合生活案例,介绍10种常见模型线性回归只是机器学习的“冰山一角”!根据不同的任务场景(分类、回归、聚类等),还有许多强大的模型可以选择。下面我用最通俗易懂的语言,结合生活案例,介绍10种常见模型及其适用场景:一、回归模型(预测连续值,如房价)1.决策树(DecisionTree)原理:像玩“20个问题”游戏,通过一系列判断(如“面积是否>100㎡?”“房龄是否0.5就判为“会”
- 《保险,让生活更美好》
婷婷_da4a
每个人都知道风险无处不在,也无法预测。那么我们最重要的不是预测未来,而是认识到未来无法预测,既然如此,我们可以提前先做好准备。保险能帮我们解决的问题是:我们提前配置的保险,可以来准备将来可能或者必然的大额支出。可能的大额支出是:意外事故费用、重大疾病费用、住院医疗费用。必然的大额支出是:小孩的教育金,老人的养老金。毋庸赘述,保险让生活只会更美好。因为意外和疾病的风险,是不可预期的,一旦发生了意外和
- Copula 回归与结构方程模型:R 语言构建多变量因果关系网络
技术点目录专题一、R及Python语言及相关性研究初步专题二、二元Copula理论与实践(一)专题三、二元Copula理论与实践(二)【R语言为主】专题四、Copula函数的统计检验与选择【R语言为主】专题五、高维数据与VineCopula【R语言】专题六、正则VineCopula(一)【R语言】专题七、正则VineCopula(二)【R语言】专题八、时间序列中的Copula【R语言】专题九、Co
- CPO:对比偏好优化—突破大型语言模型在机器翻译中的性能边界
AI专题精讲
强化学习人工智能强化学习AI技术应用
温馨提示:本篇文章已同步至"AI专题精讲"CPO:对比偏好优化—突破大型语言模型在机器翻译中的性能边界摘要中等规模的大型语言模型(LLMs),如参数量为7B或13B的模型,在机器翻译(MT)任务中展现出良好性能。然而,它们仍未能达到最先进的传统编码器-解码器翻译模型,或是如GPT-4(OpenAI,2023)等更大规模LLM的表现。在本研究中,我们致力于弥合这一性能差距。我们首先评估了在机器翻译任
- AI时代的弯道超车之第十七章:黄仁勋:坚持一件事,哪怕坐足冷板凳
Hebron_Deb
AI时代-弯道超车-逆袭人生人工智能
在这个AI重塑世界的时代,你还在原地观望吗?是时候弯道超车,抢占先机了!李尚龙倾力打造——《AI时代的弯道超车:用人工智能逆袭人生》专栏,带你系统掌握AI知识,从入门到实战,全方位提升认知与竞争力!内容亮点:AI基础+核心技术讲解职场赋能+创业路径揭秘打破信息差+预测行业未来第十七章:黄仁勋:坚持一件事,哪怕坐足冷板凳我们终于来到了第十七章,也是这本人物传记中该领域的最后一章。前面我们讲到了李飞飞
- 矩阵求逆(JAVA)利用伴随矩阵
qiuwanchi
利用伴随矩阵求逆矩阵
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(利用伴随矩阵)
* @author 邱万迟
- 单例(Singleton)模式
aoyouzi
单例模式Singleton
3.1 概述 如果要保证系统里一个类最多只能存在一个实例时,我们就需要单例模式。这种情况在我们应用中经常碰到,例如缓存池,数据库连接池,线程池,一些应用服务实例等。在多线程环境中,为了保证实例的唯一性其实并不简单,这章将和读者一起探讨如何实现单例模式。 3.2
- [开源与自主研发]就算可以轻易获得外部技术支持,自己也必须研发
comsci
开源
现在国内有大量的信息技术产品,都是通过盗版,免费下载,开源,附送等方式从国外的开发者那里获得的。。。。。。
虽然这种情况带来了国内信息产业的短暂繁荣,也促进了电子商务和互联网产业的快速发展,但是实际上,我们应该清醒的看到,这些产业的核心力量是被国外的
- 页面有两个frame,怎样点击一个的链接改变另一个的内容
Array_06
UIXHTML
<a src="地址" targets="这里写你要操作的Frame的名字" />搜索
然后你点击连接以后你的新页面就会显示在你设置的Frame名字的框那里
targerts="",就是你要填写目标的显示页面位置
=====================
例如:
<frame src=&
- Struts2实现单个/多个文件上传和下载
oloz
文件上传struts
struts2单文件上传:
步骤01:jsp页面
<!--在进行文件上传时,表单提交方式一定要是post的方式,因为文件上传时二进制文件可能会很大,还有就是enctype属性,这个属性一定要写成multipart/form-data,不然就会以二进制文本上传到服务器端-->
<form action="fileUplo
- 推荐10个在线logo设计网站
362217990
logo
在线设计Logo网站。
1、http://flickr.nosv.org(这个太简单)
2、http://www.logomaker.com/?source=1.5770.1
3、http://www.simwebsol.com/ImageTool
4、http://www.logogenerator.com/logo.php?nal=1&tpl_catlist[]=2
5、ht
- jsp上传文件
香水浓
jspfileupload
1. jsp上传
Notice:
1. form表单 method 属性必须设置为 POST 方法 ,不能使用 GET 方法
2. form表单 enctype 属性需要设置为 multipart/form-data
3. form表单 action 属性需要设置为提交到后台处理文件上传的jsp文件地址或者servlet地址。例如 uploadFile.jsp 程序文件用来处理上传的文
- 我的架构经验系列文章 - 前端架构
agevs
JavaScriptWeb框架UIjQuer
框架层面:近几年前端发展很快,前端之所以叫前端因为前端是已经可以独立成为一种职业了,js也不再是十年前的玩具了,以前富客户端RIA的应用可能会用flash/flex或是silverlight,现在可以使用js来完成大部分的功能,因此js作为一门前端的支撑语言也不仅仅是进行的简单的编码,越来越多框架性的东西出现了。越来越多的开发模式转变为后端只是吐json的数据源,而前端做所有UI的事情。MVCMV
- android ksoap2 中把XML(DataSet) 当做参数传递
aijuans
android
我的android app中需要发送webservice ,于是我使用了 ksop2 进行发送,在测试过程中不是很顺利,不能正常工作.我的web service 请求格式如下
[html]
view plain
copy
<Envelope xmlns="http://schemas.
- 使用Spring进行统一日志管理 + 统一异常管理
baalwolf
spring
统一日志和异常管理配置好后,SSH项目中,代码以往散落的log.info() 和 try..catch..finally 再也不见踪影!
统一日志异常实现类:
[java]
view plain
copy
package com.pilelot.web.util;
impor
- Android SDK 国内镜像
BigBird2012
android sdk
一、镜像地址:
1、东软信息学院的 Android SDK 镜像,比配置代理下载快多了。
配置地址, http://mirrors.neusoft.edu.cn/configurations.we#android
2、北京化工大学的:
IPV4:ubuntu.buct.edu.cn
IPV4:ubuntu.buct.cn
IPV6:ubuntu.buct6.edu.cn
- HTML无害化和Sanitize模块
bijian1013
JavaScriptAngularJSLinkySanitize
一.ng-bind-html、ng-bind-html-unsafe
AngularJS非常注重安全方面的问题,它会尽一切可能把大多数攻击手段最小化。其中一个攻击手段是向你的web页面里注入不安全的HTML,然后利用它触发跨站攻击或者注入攻击。
考虑这样一个例子,假设我们有一个变量存
- [Maven学习笔记二]Maven命令
bit1129
maven
mvn compile
compile编译命令将src/main/java和src/main/resources中的代码和配置文件编译到target/classes中,不会对src/test/java中的测试类进行编译
MVN编译使用
maven-resources-plugin:2.6:resources
maven-compiler-plugin:2.5.1:compile
&nbs
- 【Java命令二】jhat
bit1129
Java命令
jhat用于分析使用jmap dump的文件,,可以将堆中的对象以html的形式显示出来,包括对象的数量,大小等等,并支持对象查询语言。 jhat默认开启监听端口7000的HTTP服务,jhat是Java Heap Analysis Tool的缩写
1. 用法:
[hadoop@hadoop bin]$ jhat -help
Usage: jhat [-stack <bool&g
- JBoss 5.1.0 GA:Error installing to Instantiated: name=AttachmentStore state=Desc
ronin47
进到类似目录 server/default/conf/bootstrap,打开文件 profile.xml找到: Xml代码<bean
name="AttachmentStore"
class="org.jboss.system.server.profileservice.repository.AbstractAtta
- 写给初学者的6条网页设计安全配色指南
brotherlamp
UIui自学ui视频ui教程ui资料
网页设计中最基本的原则之一是,不管你花多长时间创造一个华丽的设计,其最终的角色都是这场秀中真正的明星——内容的衬托
我仍然清楚地记得我最早的一次美术课,那时我还是一个小小的、对凡事都充满渴望的孩子,我摆放出一大堆漂亮的彩色颜料。我仍然记得当我第一次看到原色与另一种颜色混合变成第二种颜色时的那种兴奋,并且我想,既然两种颜色能创造出一种全新的美丽色彩,那所有颜色
- 有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。写一个函数实现。复杂度是什么。
bylijinnan
java算法面试
import java.util.Random;
import java.util.Set;
import java.util.TreeSet;
/**
* http://weibo.com/1915548291/z7HtOF4sx
* #面试题#有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。
* 写一个函数实现。复杂度是什么
- struts2获得request、session、application方式
chiangfai
application
1、与Servlet API解耦的访问方式。
a.Struts2对HttpServletRequest、HttpSession、ServletContext进行了封装,构造了三个Map对象来替代这三种对象要获取这三个Map对象,使用ActionContext类。
----->
package pro.action;
import java.util.Map;
imp
- 改变python的默认语言设置
chenchao051
python
import sys
sys.getdefaultencoding()
可以测试出默认语言,要改变的话,需要在python lib的site-packages文件夹下新建:
sitecustomize.py, 这个文件比较特殊,会在python启动时来加载,所以就可以在里面写上:
import sys
sys.setdefaultencoding('utf-8')
&n
- mysql导入数据load data infile用法
daizj
mysql导入数据
我们常常导入数据!mysql有一个高效导入方法,那就是load data infile 下面来看案例说明
基本语法:
load data [low_priority] [local] infile 'file_name txt' [replace | ignore]
into table tbl_name
[fields
[terminated by't']
[OPTI
- phpexcel导入excel表到数据库简单入门示例
dcj3sjt126com
PHPExcel
跟导出相对应的,同一个数据表,也是将phpexcel类放在class目录下,将Excel表格中的内容读取出来放到数据库中
<?php
error_reporting(E_ALL);
set_time_limit(0);
?>
<html>
<head>
<meta http-equiv="Content-Type"
- 22岁到72岁的男人对女人的要求
dcj3sjt126com
22岁男人对女人的要求是:一,美丽,二,性感,三,有份具品味的职业,四,极有耐性,善解人意,五,该聪明的时候聪明,六,作小鸟依人状时尽量自然,七,怎样穿都好看,八,懂得适当地撒娇,九,虽作惊喜反应,但看起来自然,十,上了床就是个无条件荡妇。 32岁的男人对女人的要求,略作修定,是:一,入得厨房,进得睡房,二,不必服侍皇太后,三,不介意浪漫蜡烛配盒饭,四,听多过说,五,不再傻笑,六,懂得独
- Spring和HIbernate对DDM设计的支持
e200702084
DAO设计模式springHibernate领域模型
A:数据访问对象
DAO和资源库在领域驱动设计中都很重要。DAO是关系型数据库和应用之间的契约。它封装了Web应用中的数据库CRUD操作细节。另一方面,资源库是一个独立的抽象,它与DAO进行交互,并提供到领域模型的“业务接口”。
资源库使用领域的通用语言,处理所有必要的DAO,并使用领域理解的语言提供对领域模型的数据访问服务。
- NoSql 数据库的特性比较
geeksun
NoSQL
Redis 是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。目前由VMware主持开发工作。
1. 数据模型
作为Key-value型数据库,Redis也提供了键(Key)和值(Value)的映射关系。除了常规的数值或字符串,Redis的键值还可以是以下形式之一:
Lists (列表)
Sets
- 使用 Nginx Upload Module 实现上传文件功能
hongtoushizi
nginx
转载自: http://www.tuicool.com/wx/aUrAzm
普通网站在实现文件上传功能的时候,一般是使用Python,Java等后端程序实现,比较麻烦。Nginx有一个Upload模块,可以非常简单的实现文件上传功能。此模块的原理是先把用户上传的文件保存到临时文件,然后在交由后台页面处理,并且把文件的原名,上传后的名称,文件类型,文件大小set到页面。下
- spring-boot-web-ui及thymeleaf基本使用
jishiweili
springthymeleaf
视图控制层代码demo如下:
@Controller
@RequestMapping("/")
public class MessageController {
private final MessageRepository messageRepository;
@Autowired
public MessageController(Mes
- 数据源架构模式之活动记录
home198979
PHP架构活动记录数据映射
hello!架构
一、概念
活动记录(Active Record):一个对象,它包装数据库表或视图中某一行,封装数据库访问,并在这些数据上增加了领域逻辑。
对象既有数据又有行为。活动记录使用直截了当的方法,把数据访问逻辑置于领域对象中。
二、实现简单活动记录
活动记录在php许多框架中都有应用,如cakephp。
<?php
/**
* 行数据入口类
*
- Linux Shell脚本之自动修改IP
pda158
linuxcentosDebian脚本
作为一名
Linux SA,日常运维中很多地方都会用到脚本,而服务器的ip一般采用静态ip或者MAC绑定,当然后者比较操作起来相对繁琐,而前者我们可以设置主机名、ip信息、网关等配置。修改成特定的主机名在维护和管理方面也比较方便。如下脚本用途为:修改ip和主机名等相关信息,可以根据实际需求修改,举一反三!
#!/bin/sh
#auto Change ip netmask ga
- 开发环境搭建
独浮云
eclipsejdktomcat
最近在开发过程中,经常出现MyEclipse内存溢出等错误,需要重启的情况,好麻烦。对于一般的JAVA+TOMCAT项目开发,其实没有必要使用重量级的MyEclipse,使用eclipse就足够了。尤其是开发机器硬件配置一般的人。
&n
- 操作日期和时间的工具类
vipbooks
工具类
大家好啊,好久没有来这里发文章了,今天来逛逛,分享一篇刚写不久的操作日期和时间的工具类,希望对大家有所帮助。
/*
* @(#)DataFormatUtils.java 2010-10-10
*
* Copyright 2010 BianJing,All rights reserved.
*/
package test;
impor