进程和线程的关系就是一个进程包含一个或多个线程。
线程是操作系统调度的最小任务单位。线程自己不能决定什么时候执行,由操作系统决定什么时候调度。因此多线程编程中,代码的先后顺序不代表代码的执行顺序。
多线程有什么好处?
同时多线程也会带来安全问题,比如多个线程读写一个共享变量,会出现数据不一致的问题。
什么时候考虑用多线程?
多线程的创建方法基本有四种:
public class ThreadTest extends Thread {
@Override
public void run() {
System.out.println("新线程开始...");
}
public static void main(String[] args) {
ThreadTest t = new ThreadTest();
t.start();
System.out.println("main线程结束...");
}
}
main线程结束
新线程开始
启动一个新线程总是调用它的start()方法,而不是run()方法;ThreadTest子线程启动后,它跟main就开始同时运行了,谁先执行谁后执行由操作系统调度。所以多线程代码的执行顺序跟代码顺序无关。
实现Runnable接口,重写run()方法,作为构造器参数传给Thread,调用start()方法启动线程。
public class Test {
public static void main(String[] args) {
RunnableThread r = new RunnableThread();
new Thread(r).start();
new Thread(r).start();
}
}
class RunnableThread implements Runnable {
@Override
public void run() {
System.out.println("新线程开始...");
}
}
一般推荐使用实现Runnable的方式来创建新线程,它的优点有:
Callable区别于Runnable接口的点在于,Callable的方法有返回值,还能抛出异常。
public interface Callable
V call() throws Exception;
}
Callable的用法:
Callable和FutureTask一起使用的例子:
public class CallableTest {
public static void main(String[] args) {
// 创建Callable接口实现类的对象
CallableThread sumThread = new CallableThread();
// 创建FutureTask对象
FutureTask
// 将FutureTask的对象作为参数传递到Thread类的构造器中,创建Thread对象,并调用start()
new Thread(futureTask).start();
try {
// 获取Callable中call方法的返回值
Integer sum = futureTask.get();
System.out.println("总和为" + sum);
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
}
System.out.println("main线程结束");
}
}
class CallableThread implements Callable
@Override
public Integer call() throws Exception {
int sum = 0;
for (int i = 1; i <= 100; i++) {
sum += i;
}
Thread.sleep(2000); // 等待2s验证futureTask.get()是否等待
return sum;
}
}
总和为5050
main线程结束
在JDK源码中可看到get()方法执行时,会判断线程状态如果是未完成,会进入一个无限循环,直到任务完成才返回执行结果。
public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING) // 如果未完成,则等待完成
s = awaitDone(false, 0L);
return report(s);
}
private int awaitDone(boolean timed, long nanos) throws InterruptedException {
// ...
for (; ; ) { // 无线循环,直到任务完成
// ...
int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
// ...
}
}
使用Callable接口前,需要了解Future和FutureTask。
在Java并发编程中,Future接口代表着异步计算结果。它定义的方法有:
FutureTask作为Future的实现类,也有局限性。比如get()方法会阻塞调用线程;不能将多个异步计算结果合并到一起等等,针对这些局限,Java8提供了CompletableFuture。
下面我将围绕这几个问题,来讨论一下线程池。
线程池(Thread Pool)是一种基于池化思想的管理线程的工具,它内部维护了多个线程,目的是能重复利用线程,控制并发量,降低线程创建及销毁的资源消耗,提升程序稳定性。
线程池解决的核心问题就是资源管理问题,在并发场景下,系统不能够确定在任意时刻,有多少任务需要执行,有多少资源需要投入。这种不确定性将带来以下若干问题:
线程池这种基于池化思想的技术就是为了解决这类问题。
线程池的的核心实现类是ThreadPoolExecutor,调用execute或者submit方法即可开启一个子任务。
public class ThreadPoolTest {
private static ThreadPoolExecutor poolExecutor =
new ThreadPoolExecutor(1, 1, 5, TimeUnit.SECONDS, new LinkedBlockingQueue<>(1));
public static void main(String[] args) throws ExecutionException, InterruptedException {
Runnable runnableTask = () -> System.out.println("runnable task end");
poolExecutor.execute(runnableTask);
Callable
Future
System.out.println(future.get());
}
}
ThreadPoolExecutor的核心构造器有7个参数,我们来分析一下每个参数的含义:
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
// 省略...
}
JDK也提供了一个快速创建线程池的工具类Executors,它提供了多种创建线程池的方法,但通常不建议使用Executors来创建线程池,因为它提供的很多工具方法,要么使用的阻塞队列没有设置边界,要么是没有设置最大线程的上限。任务一多容易发生OOM。实际开发应该根据业务自定义线程池。
线程池的核心运行机制在于execute方法,所有的任务调度都是通过execute方法完成的。
public void execute(Runnable command) {
// ...
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) { // (1)
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) { // (2)
int recheck = ctl.get();
// 重新检查状态,如果是非运行状态,接着执行队列删除操作,然后执行拒绝策略
if (! isRunning(recheck) && remove(command))
reject(command);
// 如果是因为remove(command)删除队列元素失败,再判断池中线程数量
// 如果池中线程数为0则新增一个任务为null的非核心线程
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false)) // (3)
reject(command);
}
透过execute方法的3个if判断,可以把它的逻辑梳理为3个部分:
execute中的核心逻辑要看addWoker方法,它承担了核心线程和非核心线程的创建。addWorker方法前半部分代码用一个双重for循环确保线程池状态正确,后半部分的逻辑是创建一个线程对象Worker,开启新线程执行任务的过程。
Worker是对提交进来的线程的封装,创建的worker会被添加到一个HashSet,线程池中的线程都维护在这个名为workers的HashSet中并被线程池所管理。
前面说到,Worker本身也是一个线程对象,它实现了Runnable接口,在addWorker中会启动一个新的任务,所以我们要看它的run方法,而run方法的核心逻辑是runWorker方法。
final void runWorker(Worker w) {
// ...
try {
while (task != null || (task = getTask()) != null) {
// ...
try {
try {
task.run(); // 执行普通的run方法
} finally {
task = null; // task置空
}
}
}
} finally {
processWorkerExit(w, completedAbruptly); // 回收空闲线程
}
}
可以看到runWorker方法中有一个while循环,循环执行task的run方法,这里的task就是提交到线程池的任务,它对当成了普通的对象,执行完task.run(),最后会把task设置为null。
再看循环的条件,已知task是有可能为空的,所以我们再看看(task = getTask()) != null这个条件,如果getTask() == null则跳出循环执行processWorkerExit方法,processWorkerExit方法的作用是回收空闲线程。
很多答案都在getTask()方法中。
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (; ; ) { // (1)
// 校验线程池状态的代码,先省略...
int wc = workerCountOf(c);
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; // (2)
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c)) // 线程数减1
return null; // 这里时中断外层while循环的时机
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take(); // (3)
if (r != null)
return r; // 取到值了就在外层的while循环中执行任务
timedOut = true; // 否则就标记为获取队列任务超时
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
结合(1)、(3)这两个地方可以看出,getTask()方法是一个无限循环,不断从阻塞队列中取任务,取到了任务就返回,到外层runWorker方法中,执行这个任务的run方法,即线程池通过启动一个Worker子线程来执行提交进来的任务,并且一个Worker线程会执行多个任务!
我们再看看getTask()何时返回null,因为返回null才可以看下一步的processWorkerExit方法。
getTask()返回null主要看timed && timedOut这个条件。变量值timed为true的条件是:允许核心线程超时或者线程数大于核心线程数。timedOut变量为true的条件是从workQueue为空了,取不到任务了,但是这个前提是timed == true,执行workQueue.poll的时候,因为workQueue.poll方法获取任务最多等待keepAliveTime的时间,超过这个时间获取不到就返回null,而workQueue.take()方法获取不到任务会一直等待!
因此,在核心线程不会超时的情况下,如果池中的线程数小于核心线程数,这个getTask()会一直循环下去,这就是在这种情况下线程池不会自动关闭的原因!反之,在核心线程不会超时的情况下,如果池中的线程数超过核心线程数,才会对多余的线程回收。如果allowCoreThreadTimeOut == true,即核心线程也能超时,当阻塞队列为空,所有Worker线程都会被回收。
ThreadPoolExecutor的注释说,当池中没有剩余线程,线程池会自动关闭。
A pool that is no longer referenced in a program AND has no remaining threads will be shutdown automatically
但我也没找到证据,没看到哪里显式调用shutdown(),但确实会自动关闭。
getTask()获取不到任务后,会执行processWorkerExit方法回收线程。在这里,Worker线程集合随机删除一个线程对象,然后再随机中断一个workers中的线程。可见线程销毁线程的方式时删除线程引用,让JVM自动回收。
private void processWorkerExit(Worker w, boolean completedAbruptly) {
// ...
try {
workers.remove(w);
}
// 调用interrupt()方法中断线程,一次中断一个
tryTerminate();
// ...
}
最后我们回到最初的问题,线程池的原理是什么,线程池怎么做到重复利用线程的?
线程池通过维护一组叫Worker的线程对象来处理任务。在线程数不超过核心线程数的情况下,一个任务对应一个Worker线程,超过核心线程数,新的任务会提交到阻塞队列。一个Worker线程在启动后,除了执行第一次任务之外,还会不断向阻塞队列中消费任务。如果队列里没任务了,Worker线程会一直轮询,不会退出;只有在池中线程数超过核心线程数时才退出轮询,然后回收多余的空闲线程。即一个Worker线程会处理多个任务,且Worker线程受线程池管理,不会随意回收。
拒绝策略的目的是保护线程池,避免无节制新增任务。JDK使用RejectedExecutionHandler接口代表拒绝策略,并提供了4个实现类。线程池的默认拒绝策略是AbortPolicy,丢弃任务并抛出异常。实际开发中用户可以通过实现这个接口去定制拒绝策略。
当线程启动后,它可以在Runnable、Blocked、Waiting和Timed Waiting这几个状态之间切换,直到最后变成Terminated状态,线程终止。
线程终止的原因有:
public class ThreadJoinTest {
public static void main(String[] args) throws InterruptedException {
Thread t = new Thread(() -> {
System.out.println("hello");
});
System.out.println("start");
t.start();
t.join();
System.out.println("end");
}
}
start
hello
end
线程间共享变量需要使用volatile关键字标记,确保每个线程都能读取到更新后的变量值。
为什么要对线程间共享的变量用关键字volatile声明?这涉及到Java的内存模型(JMM)。
类变量、实例变量是共享变量,方法局部变量是私有变量。共享变量的值保存在主内存中,每个线程都有自己的工作内存,私有变量就保存在工作内存。
在Java虚拟机中,共享变量的值保存在主内存中,但是,当线程访问变量时,它会先获取一个副本,并保存在自己的工作内存中。如果线程修改了变量的值,虚拟机会在某个时刻把修改后的值回写到主内存,但是,这个时间是不确定的!
这会导致如果一个线程更新了某个变量,另一个线程读取的值可能还是更新前的。例如,主内存的变量a = true,线程1执行a = false时,它在此刻仅仅是把变量a的副本变成了false,主内存的变量a还是true,在JVM把修改后的a回写到主内存之前,其他线程读取到的a的值仍然是true,这就造成了多线程之间共享的变量不一致。
因此,volatile关键字的目的是告诉虚拟机:
volatile关键字解决的是可见性问题:当一个线程修改了某个共享变量的值,其他线程能够立刻看到修改后的值。
但是volatile不能保证原子性,原子性问题需要根据实际情况做同步处理。
什么叫线程同步?对于多线程的程序来说,同步指的是在一定的时间内只允许某一个线程访问某个资源。
在Java中,最常见的方法是用synchronized关键字实现同步效果。
synchronized可以修饰实例方法、静态方法、代码块。
synchronized的底层是使用操作系统的互斥锁(mutex lock)实现的,它的特点是保证内存可见性、操作原子性。
使用synchronized解决了多线程同步访问共享变量的正确性问题。但是,它的缺点是带来了性能下降。因为synchronized代码块无法并发执行。此外,加锁和解锁需要消耗一定的时间,所以,synchronized会降低程序的执行效率。
JVM规范定义了几种原子操作:
long和double是64位(8字节)数据,在32位和64位操作系统上是不一样的。JVM没有明确规定64位赋值操作是不是一个原子操作,不过在x64平台的JVM是把long和double的赋值作为原子操作实现的。