源码解析:https://www.jianshu.com/p/e93fd15d93d3?ivk_sa=1024320u
常用方法
1、dispatch_group_async
//将block加入到queue中,并和group相关联
void dispatch_group_async(dispatch_group_t group,
dispatch_queue_t queue,
dispatch_block_t block);
如果提交到dispatch_queue_t queue中与group关联的任务全都执行完毕会调用dispatch_group_notify并且dispatch_group_wait会停止等待;
2、dispatch_group_enter & dispatch_group_leave
//将代码块加入到group中,与dispatch_group_async功能类似
//开始一个任务
void dispatch_group_enter(dispatch_group_t group);
//结束的任务
void dispatch_group_leave(dispatch_group_t group);
当调用enter时信号量-1,调用leave时信号量+1,当计数回复原值时会调用dispatch_group_notify并且dispatch_group_wait会停止等待;
注意点: dispatch_group_enter 和 dispatch_group_leave 必须成对出现
3、dispatch_group_wait
//阻塞当前线程(不能放在主线程)等待group任务的完成,可以设置超时时间
long dispatch_group_wait(dispatch_group_t group,
dispatch_time_t timeout);
4 、dispatch_group_notify
/* dispatch_group_notify会把block加入到queue中,
* 当dispatch_group_t中的任务执行完成时执行
* 或者在dispatch_group_enter和dispatch_group_leave存在的情况下,计数为0的时候执行
*/
void dispatch_group_notify(dispatch_group_t group,
dispatch_queue_t queue,
dispatch_block_t block);
dipatch_group_notify和dispatch_group_wait都能实现等待group中的任务执行完之后再进行其他操作;不同的是dispatch_group_notify可以将要执行的任务放到block中,不会阻塞当前线程,dispatch_group_wait会阻塞当前线程
5、dispatch_apply:需要反复执行某个任务时使用,会阻塞当前线程
需要注意的点⚠️
1、dispatch_group_enter 和 dispatch_group_leave 必须成对出现
如果dispatch_group_enter比dispatch_group_leave多,不会走到唤醒逻辑,dispatch_group_notify中的任务无法执行或者dispatch_group_wait收不到信号而卡住线程。如果是dispatch_group_leave多,则会引起崩溃。
2、 dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
dispatch_group_wait 会阻塞当前线程,不要放在主线程使用
3、dispatch_group_async内部会加dispatch_group_enter 和dispatch_group_leave,但是block内部进行异步操作,会出现notify没有在想要的时机执行的问题
如下面两张图,图1正常,但图2时机错误
可以改用dispatch_group_enter & dispatch_group_leave
下面看下dispatch_group的实现原理
dispatch_group的实现是基于dispatch_semaphore实现的
dispatch_group_create
dispatch_group_t
dispatch_group_create(void)
{
return (dispatch_group_t)dispatch_semaphore_create(LONG_MAX);
}
dispatch_group_create其实就是创建了一个value为LONG_MAX的dispatch_semaphore信号量
dispatch_group_async
void
dispatch_group_async(dispatch_group_t dg, dispatch_queue_t dq,
dispatch_block_t db)
{
dispatch_group_async_f(dg, dq, _dispatch_Block_copy(db),
_dispatch_call_block_and_release);
}
dispatch_group_async只是dispatch_group_async_f的封装
dispatch_group_async_f
void
dispatch_group_async_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt,
dispatch_function_t func)
{
dispatch_continuation_t dc;
_dispatch_retain(dg);
dispatch_group_enter(dg);
dc = fastpath(_dispatch_continuation_alloc_cacheonly());
if (!dc) {
dc = _dispatch_continuation_alloc_from_heap();
}
dc->do_vtable = (void *)(DISPATCH_OBJ_ASYNC_BIT | DISPATCH_OBJ_GROUP_BIT);
dc->dc_func = func;
dc->dc_ctxt = ctxt;
dc->dc_group = dg;
// No fastpath/slowpath hint because we simply don't know
if (dq->dq_width != 1 && dq->do_targetq) {
return _dispatch_async_f2(dq, dc);
}
_dispatch_queue_push(dq, dc);
}
从上面的代码我们可以看出dispatch_group_async_f和dispatch_async_f相似。dispatch_group_async_f多了dispatch_group_enter(dg);,另外在do_vtable的赋值中dispatch_group_async_f多了一个DISPATCH_OBJ_GROUP_BIT的标记符。既然添加了dispatch_group_enter必定会存在dispatch_group_leave。_dispatch_continuation_pop函数的源码中有一段代码如下:
_dispatch_client_callout(dc->dc_ctxt, dc->dc_func);
if (dg) {
//group需要进行调用dispatch_group_leave并释放信号
dispatch_group_leave(dg);
_dispatch_release(dg);
}
所以dispatch_group_async_f函数中的dispatch_group_leave是在_dispatch_continuation_pop函数中调用的。
这里概括一下dispatch_group_async_f的工作流程:
调用dispatch_group_enter;
将block和queue等信息记录到dispatch_continuation_t结构体中,并将它加入到group的链表中;
_dispatch_continuation_pop执行时会判断任务是否为group,是的话执行完任务再调用dispatch_group_leave以达到信号量的平衡。
dispatch_group_async_f内部会加dispatch_group_enter 和dispatch_group_leave,但是内部进行异步操作,会出现notify没有在想要的时机执行的问题
dispatch_group_enter
void
dispatch_group_enter(dispatch_group_t dg)
{
dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
(void)dispatch_semaphore_wait(dsema, DISPATCH_TIME_FOREVER);
}
dispatch_group_enter将dispatch_group_t转换成dispatch_semaphore_t,并调用dispatch_semaphore_wait,原子性减1后,进入等待状态直到有信号唤醒。所以说dispatch_group_enter就是对dispatch_semaphore_wait的封装。
dispatch_group_leave
void
dispatch_group_leave(dispatch_group_t dg)
{
dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
dispatch_atomic_release_barrier();
long value = dispatch_atomic_inc2o(dsema, dsema_value);//dsema_value原子性加1
if (slowpath(value == LONG_MIN)) {//内存溢出,由于dispatch_group_leave在dispatch_group_enter之前调用
DISPATCH_CLIENT_CRASH("Unbalanced call to dispatch_group_leave()");
}
if (slowpath(value == dsema->dsema_orig)) {//表示所有任务已经完成,唤醒group
(void)_dispatch_group_wake(dsema);
}
}
从上面的源代码中我们看到dispatch_group_leave将dispatch_group_t转换成dispatch_semaphore_t后将dsema_value的值原子性加1。如果value为LONG_MIN程序crash;如果value等于dsema_orig表示所有任务已完成,调用_dispatch_group_wake唤醒group(_dispatch_group_wake的用于和notify有关,我们会在后面介绍)。因为在enter的时候进行了原子性减1操作。所以在leave的时候需要原子性加1。
这里先说明一下enter和leave之间的关系:
dispatch_group_leave与dispatch_group_enter配对使用。当调用了dispatch_group_enter而没有调用dispatch_group_leave时,由于value不等于dsema_orig不会走到唤醒逻辑,dispatch_group_notify中的任务无法执行或者dispatch_group_wait收不到信号而卡住线程。
dispatch_group_enter必须在dispatch_group_leave之前出现。当dispatch_group_leave比dispatch_group_enter多调用了一次或者说在dispatch_group_enter之前被调用的时候,dispatch_group_leave进行原子性加1操作,相当于value为LONGMAX+1,发生数据长度溢出,变成LONG_MIN,由于value == LONG_MIN成立,程序发生crash。
dispatch_group_notify
void
dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq,
dispatch_block_t db)
{
dispatch_group_notify_f(dg, dq, _dispatch_Block_copy(db),
_dispatch_call_block_and_release);
}
dispatch_group_notify是dispatch_group_notify_f的封装,具体实现在后者。
dispatch_group_notify_f
void
dispatch_group_notify_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt,
void (*func)(void *))
{
dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
struct dispatch_sema_notify_s *dsn, *prev;
//封装dispatch_continuation_t结构体
// FIXME -- this should be updated to use the continuation cache
while (!(dsn = calloc(1, sizeof(*dsn)))) {
sleep(1);
}
dsn->dsn_queue = dq;
dsn->dsn_ctxt = ctxt;
dsn->dsn_func = func;
_dispatch_retain(dq);
dispatch_atomic_store_barrier();
//将结构体放到链表尾部,如果链表为空同时设置链表头部节点并唤醒group
prev = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, dsn);
if (fastpath(prev)) {
prev->dsn_next = dsn;
} else {
_dispatch_retain(dg);
(void)dispatch_atomic_xchg2o(dsema, dsema_notify_head, dsn);
if (dsema->dsema_value == dsema->dsema_orig) {//任务已经完成,唤醒group
_dispatch_group_wake(dsema);
}
}
}
所以dispatch_group_notify函数只是用链表把所有回调通知保存起来,等待调用。
_dispatch_group_wake
static long
_dispatch_group_wake(dispatch_semaphore_t dsema)
{
struct dispatch_sema_notify_s *next, *head, *tail = NULL;
long rval;
//将dsema的dsema_notify_head赋值为NULL,同时将之前的内容赋给head
head = dispatch_atomic_xchg2o(dsema, dsema_notify_head, NULL);
if (head) {
// snapshot before anything is notified/woken
//将dsema的dsema_notify_tail赋值为NULL,同时将之前的内容赋给tail
tail = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, NULL);
}
//将dsema的dsema_group_waiters设置为0,并返回原来的值
rval = dispatch_atomic_xchg2o(dsema, dsema_group_waiters, 0);
if (rval) {
//循环调用semaphore_signal唤醒当初等待group的信号量,使得dispatch_group_wait函数返回。
// wake group waiters
#if USE_MACH_SEM
_dispatch_semaphore_create_port(&dsema->dsema_waiter_port);
do {
kern_return_t kr = semaphore_signal(dsema->dsema_waiter_port);
DISPATCH_SEMAPHORE_VERIFY_KR(kr);
} while (--rval);
#elif USE_POSIX_SEM
do {
int ret = sem_post(&dsema->dsema_sem);
DISPATCH_SEMAPHORE_VERIFY_RET(ret);
} while (--rval);
#endif
}
if (head) {
//获取链表,依次调用dispatch_async_f异步执行在notify函数中的任务即Block。
// async group notify blocks
do {
dispatch_async_f(head->dsn_queue, head->dsn_ctxt, head->dsn_func);
_dispatch_release(head->dsn_queue);
next = fastpath(head->dsn_next);
if (!next && head != tail) {
while (!(next = fastpath(head->dsn_next))) {
_dispatch_hardware_pause();
}
}
free(head);
} while ((head = next));
_dispatch_release(dsema);
}
return 0;
}
_dispatch_group_wake主要的作用有两个:
调用semaphore_signal唤醒当初等待group的信号量,使得dispatch_group_wait函数返回。
获取链表,依次调用dispatch_async_f异步执行在notify函数中的任务即Block。
dispatch_group_wait
long dispatch_group_wait(dispatch_group_t dg, dispatch_time_t timeout)
{
dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
if (dsema->dsema_value == dsema->dsema_orig) {//没有需要执行的任务
return 0;
}
if (timeout == 0) {//返回超时
#if USE_MACH_SEM
return KERN_OPERATION_TIMED_OUT;
#elif USE_POSIX_SEM
errno = ETIMEDOUT;
return (-1);
#endif
}
return _dispatch_group_wait_slow(dsema, timeout);
}
dispatch_group_wait用于等待group中的任务完成。
_dispatch_group_wait_slow
static long
_dispatch_group_wait_slow(dispatch_semaphore_t dsema, dispatch_time_t timeout)
{
long orig;
again:
// check before we cause another signal to be sent by incrementing
// dsema->dsema_group_waiters
if (dsema->dsema_value == dsema->dsema_orig) {
return _dispatch_group_wake(dsema);
}
// Mach semaphores appear to sometimes spuriously wake up. Therefore,
// we keep a parallel count of the number of times a Mach semaphore is
// signaled (6880961).
(void)dispatch_atomic_inc2o(dsema, dsema_group_waiters);
// check the values again in case we need to wake any threads
if (dsema->dsema_value == dsema->dsema_orig) {
return _dispatch_group_wake(dsema);
}
#if USE_MACH_SEM
mach_timespec_t _timeout;
kern_return_t kr;
_dispatch_semaphore_create_port(&dsema->dsema_waiter_port);
// From xnu/osfmk/kern/sync_sema.c:
// wait_semaphore->count = -1; /* we don't keep an actual count */
//
// The code above does not match the documentation, and that fact is
// not surprising. The documented semantics are clumsy to use in any
// practical way. The above hack effectively tricks the rest of the
// Mach semaphore logic to behave like the libdispatch algorithm.
switch (timeout) {
default:
do {
uint64_t nsec = _dispatch_timeout(timeout);
_timeout.tv_sec = (typeof(_timeout.tv_sec))(nsec / NSEC_PER_SEC);
_timeout.tv_nsec = (typeof(_timeout.tv_nsec))(nsec % NSEC_PER_SEC);
kr = slowpath(semaphore_timedwait(dsema->dsema_waiter_port,
_timeout));
} while (kr == KERN_ABORTED);
if (kr != KERN_OPERATION_TIMED_OUT) {
DISPATCH_SEMAPHORE_VERIFY_KR(kr);
break;
}
// Fall through and try to undo the earlier change to
// dsema->dsema_group_waiters
case DISPATCH_TIME_NOW:
while ((orig = dsema->dsema_group_waiters)) {
if (dispatch_atomic_cmpxchg2o(dsema, dsema_group_waiters, orig,
orig - 1)) {
return KERN_OPERATION_TIMED_OUT;
}
}
// Another thread called semaphore_signal().
// Fall through and drain the wakeup.
case DISPATCH_TIME_FOREVER:
do {
kr = semaphore_wait(dsema->dsema_waiter_port);
} while (kr == KERN_ABORTED);
DISPATCH_SEMAPHORE_VERIFY_KR(kr);
break;
}
#elif USE_POSIX_SEM
//这部分代码省略
#endif
goto again;
}
从上面的代码我们发现_dispatch_group_wait_slow和_dispatch_semaphore_wait_slow的逻辑很接近。都利用mach内核的semaphore进行信号的发送。区别在于_dispatch_semaphore_wait_slow在等待结束后是return,而_dispatch_group_wait_slow在等待结束是调用_dispatch_group_wake去唤醒这个group。