其他系列文章导航
Java基础合集
数据结构与算法合集设计模式合集
多线程合集
分布式合集
ES合集
其他系列文章导航
文章目录
前言
一、题目描述
二、题解
2.1 前缀和的解题模板
2.1.1 最长递增子序列长度
2.1.2 寻找数组中第 k 大的元素
2.1.3 最长公共子序列长度
2.1.4 寻找数组中第 k 小的元素
2.2 方法一:前缀和
三、代码
3.2 方法一:前缀和
四、复杂度分析
4.2 方法一:前缀和
这是力扣的 724 题,难度为简单,解题方案有很多种,本文讲解我认为最奇妙的一种。
这是一道非常经典的前缀和问题,虽然看似简单,但它却能让你深入理解前缀和的特点。
给你一个整数数组 nums
,请计算数组的 中心下标 。
数组 中心下标 是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。
如果中心下标位于数组最左端,那么左侧数之和视为 0
,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适用。
如果数组有多个中心下标,应该返回 最靠近左边 的那一个。如果数组不存在中心下标,返回 -1
。
示例 1:
输入:nums = [1, 7, 3, 6, 5, 6] 输出:3 解释: 中心下标是 3 。 左侧数之和 sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11 , 右侧数之和 sum = nums[4] + nums[5] = 5 + 6 = 11 ,二者相等。
示例 2:
输入:nums = [1, 2, 3] 输出:-1 解释: 数组中不存在满足此条件的中心下标。
示例 3:
输入:nums = [2, 1, -1] 输出:0 解释: 中心下标是 0 。 左侧数之和 sum = 0 ,(下标 0 左侧不存在元素), 右侧数之和 sum = nums[1] + nums[2] = 1 + -1 = 0 。
提示:
1 <= nums.length <= 104
-1000 <= nums[i] <= 1000
前缀和算法是一种在处理数组或链表问题时常用的技巧,它可以有效地减少重复计算,提高算法的效率。下面是一些常见的使用前缀和算法的题目以及解题思路:
题目描述:给定一个无序数组,求最长递增子序列的长度。
解题思路:可以使用前缀和和单调栈来解决这个问题。首先,遍历数组,计算出前缀和。然后,使用单调栈记录当前递增子序列的起始位置。遍历数组时,如果当前元素大于前缀和,说明可以扩展当前递增子序列,将当前位置入栈。如果当前元素小于等于前缀和,说明当前递增子序列已经结束,弹出栈顶元素。最后,栈中剩余的元素即为最长递增子序列的起始位置,计算长度即可。
题目描述:给定一个无序数组和一个整数k,找到数组中第k大的元素。
解题思路:可以使用前缀和和快速选择算法来解决这个问题。首先,计算出数组的前缀和。然后,使用快速选择算法在数组中找到第k小的元素。具体实现中,每次选择一个枢轴元素,将数组分成两部分,小于枢轴的元素和大于枢轴的元素。如果枢轴左边的元素个数小于k,则在左边的子数组中继续查找;如果枢轴左边的元素个数大于等于k,则在右边的子数组中继续查找。最后,当找到第k小的元素时,返回该元素即可。
题目描述:给定两个字符串,求最长公共子序列的长度。
解题思路:可以使用动态规划算法来解决这个问题。如果字符串长度分别为m和n,则可以定义一个二维数组dp[m+1][n+1],其中dp[i][j]表示字符串s1的前i个字符和字符串s2的前j个字符的最长公共子序列长度。根据动态规划的思想,状态转移方程为dp[i][j] = max(dp[i-1][j-1], dp[i-1][j], dp[i][j-1])。如果s1[i-1]等于s2[j-1],则dp[i][j] = dp[i-1][j-1] + 1;否则dp[i][j]取其他两种情况中的较大值。最终结果为dp[m][n]。
题目描述:给定一个无序数组和一个整数k,找到数组中第k小的元素。
解题思路:可以使用前缀和和快速选择算法来解决这个问题。具体实现与寻找第k大元素类似,只不过最后返回的是第k小的元素而非第k大的元素。
题目仅说明是整数数组,无其他已知条件,因此考虑直接遍历数组。
初始化时,相当于索引 i=−1 ,此时 leftSum = 0 , rightSum = 所有元素的和 。
需要考虑大数越界问题。题目给定整数数组 nums ,并给定取值范围。
题目的范围在 int 类型的取值范围内,因此 sum_left 和 sum_right 使用 int 类型即可。
Java版本:
class Solution {
public int pivotIndex(int[] nums) {
int leftSum = 0, rightSum = Arrays.stream(nums).sum();
for (int i = 0; i < nums.length; i++) {
rightSum -= nums[i];
if (leftSum == rightSum) return i;
leftSum += nums[i];
}
return -1;
}
}
C++版本:
class Solution {
public:
int pivotIndex(vector& nums) {
int leftSum = 0, rightSum = accumulate(nums.begin(), nums.end(), 0);
for (int i = 0; i < nums.size(); i++) {
rightSum -= nums[i];
if (leftSum == rightSum) return i;
leftSum += nums[i];
}
return -1;
}
};
Python版本:
class Solution:
def pivotIndex(self, nums: List[int]) -> int:
left_sum, right_sum = 0, sum(nums)
for i in range(len(nums)):
right_sum -= nums[i]
if left_sum == right_sum:
return i
left_sum += nums[i]
return -1
Go版本:
package main
func pivotIndex(nums []int) int {
leftSum := 0
rightSum := 0
for _, v := range nums {
rightSum += v
}
for i, v := range nums {
rightSum -= v
if leftSum == rightSum {
return i
}
leftSum += v
}
return -1
}
时间复杂度 O(N): 其中 N 为数组 nums 长度。求和操作使用 O(N) 线性时间,遍历 nums 最差使用 O(N) 线性时间。
空间复杂度 O(1): 变量 leftSum , rightSum 使用常数大小空间。