- 二进制部署Kubernetes1.32.4最新版本高可用集群及附加组件
Nova_CaoFc
容器云技术专栏kubernetes容器云原生
一、前言在云原生技术席卷全球的今天,Kubernetes(K8s)已成为容器编排领域的事实标准。当大家都习惯了kubeadm、kubeasz等自动化工具一键部署的便利时,选择通过二进制方式手动搭建K8s集群更像是一场"知其然亦知其所以然"的深度修行。这种方式将带您穿透抽象层,直面etcd的分布式存储机制、kube-apiserver的RESTful接口设计、kubelet与CRI的交互细节,以及各
- 大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
在人工智能的浪潮之巅,我们总会惊叹于GPT-4、Llama3.1、Qwen2.5这些顶尖大语言模型(LLM)所展现出的惊人能力。它们似乎无所不知,能写诗、能编程、能进行复杂的逻辑推理。一个自然而然的问题是:它们是如何“学”会这一切的?大多数人会回答:“用海量数据喂出来的。”这个答案只说对了一半。如果你认为只要把互联网上能找到的所有数据(比如15万亿个token)随机打乱,然后“一锅烩”地喂给模型,
- 2025.7.4总结
天真小巫
职场记录职场和发展
感恩环节:感谢今日工作顺利度过,明天终于能美美的睡个懒觉了。感谢这周有个美好的双休。今日去实验室参观设备,感谢我的一个同事解答了我关于硬件设备与所做软件业务之间的关系,通过控制器控制网元等相关设备,同时,虽然参加过两周的硬装培训,但在这个光交箱得众多设备里,连交换机长什么样子都忘了。同事之间的交流完全插不上话。业务上还是需要多学习。如果所学的只是不能为自己所用,那么它将化为一摊死水。有氧运动:晚上
- 深入 Go 语言垃圾回收:从原理到内建类型 Slice、Map 的陷阱以及为何需要 strings.Builder
go垃圾回收
本文是2025-0526-go-gc.md的续篇。在理解了Go垃圾回收(GarbageCollection,GC)的宏观设计,包括并发标记清扫、三色标记法以及混合写屏障等核心机制之后,一个自然而然O问题是:这些通用的GC原理是如何与Go语言内建(built-in)的数据结构(如切片、映射等)协同工作的?这些我们日常使用的工具,其内存的生命周期管理背后又有哪些值得注意的细节?本文将作为续篇,深入探讨
- 数据结构:多维数组在内存中的映射(Address Mapping of Multi-dimensional Arrays)
95号闪电麦坤
数据结构数据结构
目录行主映射(Row-MajorMapping)列主映射(Column-MajorMapping)三维数组的性映射公式行主映射推导列主映射推导在内存中,数据只能线性存储(一维地址线),但二维数组是逻辑上的“表格”结构。所以,编译器必须把二维数组的元素映射到内存中的线性地址。行主映射(Row-MajorMapping)行主映射是指:当我们用一维线性内存来存储二维数组时,优先存储每一整行的所有元素,然
- LL面试题11
三月七꧁ ꧂
破题·大模型面试语言模型gpt人工智能自然语言处理promptllama
物流算法实习面试题7道GLM是什么? GLM(GeneralizedLinearModel)是一种六义线性模型,用于建立变量之间的关系。它将线性回归模型推广到更广泛的数据分布,可以处理非正态分布的响应变量,如二项分布(逻辑回归)、泊松分布和伽玛分布等。GLM结合线性模型和非线性函数,通过最大似然估计或广义最小二乘估计来拟合模型参数。SVM的原理?怎么找到最优的线性分类器?支持向量是什么?
- 交叉熵损失和负熵似然损失(对分类器有用)
流量留
深度学习人工智能机器学习算法
1.**交叉熵损失(Cross-EntropyLoss)**-**定义**-交叉熵损失是用来衡量分类模型输出的概率分布与真实标签的概率分布之间的差异。假设对于一个分类任务,有\(C\)个类别,模型对第\(i\)个样本的输出是一个概率分布\(\mathbf{p}_i=[p_{i1},p_{i2},\dots,p_{iC}]\),其中\(p_{ic}\)表示模型预测样本属于第\(c\)类的概率。真实标
- 一个简单的故事介绍极大似然估计
极大似然估计(MaximumLikelihoodEstimation,MLE)是一种在统计中用于估计参数的方法,其核心思想是找到使观测数据出现的概率最大的参数值。故事背景假设我们有一个不均匀的六面色子,但我们不知道每一面出现的真实概率。传统上,一个均匀的六面色子每一面出现的概率应该是1/6,但这个色子因为某些原因(比如制造上的误差)导致各面出现的概率不同。我们的任务是,通过投掷这个色子多次,来估计
- Linux系统基础网络配置老鸟精华篇 【转】
文章出处:Linux系统基础网络配置老鸟精华篇对于linux高手看似简单的网络配置问题,也许要说出所以然来也并不轻松,因此仍然有太多的初学者徘徊在门外就不奇怪了,这里,老男孩老师花了一些时间总结了这个文档小结,也还不够完善,欢迎大家补充,交流。谢谢大家!20120827补充:http://oldboy.blog.51cto.com/2561410/974194深入浅出route命令小结目录:1)配
- Spring MVC请求处理流程深度解析:从源码到实战的架构剖析
序章:一场关于SpringMVC的技术面试面试官老王翘着二郎腿,悠然地品着茶,突然抬起头:老王:“小李啊,听说你对SpringMVC很熟悉?那我问你个简单的问题:当用户在浏览器输入一个URL,比如http://localhost:8080/user/123,这个请求到达我们的Spring应用后,是怎么一步步处理的?”小李(胸有成竹):“这个我知道!首先DispatcherServlet接收请求,然
- 【机器学习】什么是逻辑回归?从入门到精通:掌握逻辑回归与二分类问题的解决之道
宸码
模式识别机器学习机器学习python逻辑回归分类人工智能算法
从入门到精通:掌握逻辑回归与二分类问题的解决之道引言1.1逻辑回归简介1.2逻辑回归的应用场景逻辑回归基本原理2.1逻辑回归概述逻辑回归的基本思想预测类别的概率2.2线性模型与Sigmoid函数线性模型Sigmoid函数Sigmoid函数的性质为什么选择Sigmoid函数2.3逻辑回归的输出:概率值分类决策代价函数与优化数学基础3.1逻辑回归的假设与目标假设目标3.2对数似然函数概率模型对数似然函
- 程序员摆摊,一天赚了57块
程序员
去年的离职帖其中有一段“摆摊经历引得了不少前同事和朋友的关注和追问,于是便想着记录一下这次心血来潮的摆摊尝试经历。(我们的务实小摊)启程:为啥想尝试一下摆摊?去年离职后到未入职新公司的空窗期,时间像被按下暂停键的影片,悬浮在生活固有的轨道之外。告别了熟悉的工位与代码,时间忽然变得宽裕而轻盈。正是在这短暂的缝隙里,同事朋友小仪发来一条信息,一个想法跃然屏上:要不,试试去摆个摊?念头一旦冒出,就像投入
- android 多通道音频,支持多通道录音
虾仁芝麻卷
android多通道音频
原生Android只支持2channel的录音。可是偏偏会有多mic的需求,比如说语音识别。目前已知TDM协议可以将多mic数据从kernel送到hal,从内核空间搬运到用户空间中。可是原生AudioRecord接口是完全不支持多channel录音数据的采集的,怎么修改,才能让原生进行支持呢?我们就从AudioRecord的构造函数开始往下研究。无论行不行,都要研究出个所以然来!我们如果写个录音a
- 二分查找快速理解
作为数据结构接触到的入门第一个算法,很多人对它不以为然,但是作为小白学习还是很有必要的,循序渐进,打开算法的大门假如你要登录王者荣耀,当你这样做时,QQ或者微信必须核实你是否有其游戏的账户,因此在数据库中查找你的用户名和账号。如果你的用户名为king,腾讯可以从以A开头的部分开始查找,但更合乎逻辑的做法是从中间开始查找。二分查找是一种算法,要求输入是一个有序的元素列表,我们结合程序的话,如果要查找
- 推荐开源项目:Jupyter 与 Nix 的完美结合
支然苹
推荐开源项目:Jupyter与Nix的完美结合jupyenvDeclarativeandreproducibleJupyterenvironments-poweredbyNix项目地址:https://gitcode.com/gh_mirrors/ju/jupyenv在数据科学与编程领域,JupyterNotebook已经成为不可或缺的工具,以其交互性和易于分享的特点深受开发者和研究人员的喜爱。然
- 谨慎处理单片机中断,中断等价于比主程序优先级更高的线程
银铠电子
单片机单片机
有些小伙伴喜欢在单片机中断里做任务,殊不知可能会因此遇到棘手的bug,然后查半天查不出个所以然。本文为了纠正这个不良习惯,对单片机中断进行阐述。 无中断时,单片机跑着主程序,当中断时,单片机进入中断服务程序。所以,中断其实是比主程序优先级更高的线程,定时中断、串口中断,每一个中断都是一个线程。既是多线程,那必然有资源共享冲突问题。所以,小小单片机,背负着“多线程”的重任。共享资源冲突,可能是全局
- 原有的原生flutter项目如何迁移到鸿蒙?
harmonyos
原有的原生flutter项目如何迁移到鸿蒙?1、创建个新项目,把旧项目的lib与assets目录复制覆盖到新项目2、修改pubspec.yaml依赖,改为支持鸿蒙版本3、如果编译没问题理论上就能跑在鸿蒙设备上了4、Android或iOS平台上的一些特殊修改复制到新项目以上操作相对简单一些。如果在老项目里面改也是可以的,直接在项目根目录直行fluttercreate--platformsohos.然
- 概率密度基本概念
Summer_Anny
概率论
概率密度(ProbabilityDensity)是概率论中用于描述随机变量分布的一种方式,特别适用于连续随机变量。它并不是一个概率值,而是表示单位范围内的概率大小或“浓度”。更具体地说,概率密度表示在某个特定值附近,随机变量可能取到某个值的相对可能性。概率密度的几个关键点:概率密度与概率的关系:概率密度函数(PDF)本身并不能直接给出某个特定值发生的概率。因为对于连续随机变量,单一值的概率是零。然
- 机器学习3——参数估计之极大似然估计
平和男人杨争争
山东大学机器学习期末复习机器学习人工智能算法
参数估计问题背景:P(ωi∣x)=p(x∣ωi)P(ωi)p(x)p(x)=∑j=1cp(x∣ωj)P(ωj)\begin{aligned}&P\left(\omega_i\mid\mathbf{x}\right)=\frac{p\left(\mathbf{x}\mid\omega_i\right)P\left(\omega_i\right)}{p(\mathbf{x})}\\&p(\mathbf
- Pytorch 实战三 Cifar 10 数据加载
四川兔兔
Pytorchpytorch人工智能python
系列文章目录文章目录系列文章目录前言一、原始数据的读取二、数据的加载源代码标签加工辅助核心类前言 前两个实战然我们基本学会了Pytorch的使用,本文的Cifar10是经典的人工智能深度学习数据集。将详细介绍数据输入、网络搭建等其中的细致处理,这几个工程下来,我们一定会学会Pytorch编程的。一、原始数据的读取 Cifar10的数据集下载地址(可以在官网,这里我给出网盘地址):通过网盘分享的
- Go Modules
至此流年莫相忘
Golanggolang开发语言后端
什么是GoModules?Gomodules是Go语言的依赖解决方案,发布于Go1.11,成长于Go1.12,丰富于Go1.13,正式于Go1.14推荐在生产上使用。Gomoudles目前集成在Go的工具链中,只要安装了Go,自然而然也就可以使用Gomoudles了,而Gomodules的出现也解决了在Go1.11前的几个常见争议问题:Go语言长久以来的依赖管理问题。“淘汰”现有的GOPATH的使
- Stable Diffusion 项目实战落地:AI绘画与文案创作的魔法 第一篇 ——让你的小说推文秒变视觉与故事双料爆款!
w风雨无阻w
AI应用实践stablediffusionAI作画人工智能
嘿!你还在用传统的小说推文配图吗?是不是觉得有时候那些配图跟小说情节对不上,感觉主角一秒从迷人的酷炫女主角变成了路边摊的摊主?别担心,今天我们就带你飞速穿越到AI绘画的世界,让你的小说推文不仅仅是文字,更是视觉上的震撼体验!在上一篇文章中,我们还讨论了AI绘画如何生成美丽的插画,而今天,咱们要进一步给小说推文加点料——如何用AI绘画生成一致性角色,让主角不管换场景、换服饰,依然保持那个熟悉的面孔,
- EM求解的高斯混合模型——Q函数的极大似然估计(九)
phoenix@Capricornus
概率论机器学习人工智能
先导:EM求解的混合密度模型——Q函数p(x∣θk)→N(x∣μk,Σk)p(\boldsymbol{x}\mid\boldsymbol{\theta}_k)\rightarrow{N}(\boldsymbol{x}\mid\boldsymbol{\mu_k},\boldsymbol{\Sigma}_k)p(x∣θk)→N(x∣μk,Σk)由上述推导即可获得高斯混合模型的EM算法:在每步迭代中,先
- 以太坊核心原理与源码全环节深度剖析
北漂老男人
区块链比特币区块链学习方法架构
以太坊核心原理与源码全环节深度剖析本文系统梳理以太坊从启动到合约执行的全流程,涵盖P2P网络、共识机制、账户模型、EVM执行、存储引擎等关键环节,逐行详解源码,解析设计模式与安全机制,助你“知其然,知其所以然”。目录架构总览与主线流程图节点启动与配置加载P2P网络与节点发现共识机制:Ethash/PoS账户模型与状态树交易池与交易验证EVM执行与合约安全持久化存储与快照进阶安全分析与扩展全局思维导
- ROS学习之消息通信
闲逸居士
ros
在ROS中,消息通信有话题,服务,动作,参数。话题(topic)发布者(Publicer)发布话题,订阅者(Subscriber)订阅话题。实质:发布者向主节点注册自己的话题等多种信息,并向该话题推送消息,不在乎谁订阅了。而订阅者订阅自己希望看到的话题的消息,也不在乎是谁推送的消息。所以许多时候,终端可以当作自定义节点使用,插足在其中。a.所以就有很多的特性,你自然而然就通了,异步很正常b.多个发
- Task 01 第一章习题
1.1说明伯努利模型的极大似然估计以及贝叶斯估计中的统计学习方法三要素。伯努利模型是定义在取值为0与1的随机变量上的概率分布。假设观测到伯努利模型n次独立的数据生成结果,其中k次的结果为1,这时可以用极大似然估计或贝叶斯估计来估计结果为1的概率。回忆知识点:统计学习方法三要素为:模型+策略+算法模型:在监督学习过程中,模型就是所要学习的条件概率分布或决策函数。策略:统计学习要考虑按照什么样的准则选
- 第1章: 伯努利模型的极大似然估计与贝叶斯估计
Dawn³
python
伯努利模型的极大似然估计与贝叶斯估计importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.statsimportbeta,bernoullifromscipy.optimizeimportminimize_scalar#设置中文字体plt.rcParams['font.sans-serif']=['SimHei']#使用黑体plt.rcParam
- 解密监督学习:带你玩转预测未来的魔术 (代码驱动)
小吉择
学习
你好,未来的数据魔法师!你是否曾对机器如何看懂图片、预测股价、甚至诊断疾病感到好奇?这一切的背后,很多时候都离不开机器学习中的一个核心分支——监督学习(SupervisedLearning)。今天,我们将一起揭开它的神秘面纱,并通过大量代码实例,让你亲手体验构建预测模型的乐趣!什么是监督学习?一切从“标签”开始想象一下,你正在教一个孩子看图识字。你会给他看一张苹果的图片,并告诉他:“这是苹果”。然
- 当 AI 进入核心业务:技术决策者必须掌握的伦理与法律避险指南
charles666666
负载均衡人工智能语言模型产品经理自然语言处理
在当今数字化浪潮下,AI巯然成为各企业角逐的核心技术驱动力。尤其对于金融、医疗以及制造业这些传统行业而言,AI技术宛如一把双刃剑,既可开辟全新业务蓝海,若驾驭不当,又将引发一系列棘手的伦理与法律危机,给企业带来灭顶之灾。一、AI伦理不只是道德题,更是技术债痛点剖析:算法偏见的技术根源回首过往,某知名银行因信贷审批算法存在种族歧视,被处以4500万美元巨额罚款,此事件在金融界掀起轩然大波。究其根本,
- 期望最大化(EM)算法的推导——Q函数
phoenix@Capricornus
模式识别中的数学问题算法概率论机器学习
先导:①詹森不等式(Jensen’sInequality)②一般情况下的期望最大化(EM)算法③离散隐藏变量下期望最大化(EM)算法的简化对于一个含有隐变量的概率模型,极大化观测数据(不完全数据)XXX关于参数θ\thetaθ的对数似然函数,即极大化L(θ)=logP(X∣θ)=log∑ZP(X,Z∣θ)=log(∑ZP(X∣Z,θ)P(Z∣θ))(12)L(\theta)=\logP(X\
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo