专栏系列文章如下:
一:Tixiao Shan最新力作LVI-SAM(Lio-SAM+Vins-Mono),基于视觉-激光-惯导里程计的SLAM框架,环境搭建和跑通过程_goldqiu的博客-CSDN博客
二.激光SLAM框架学习之A-LOAM框架---介绍及其演示_goldqiu的博客-CSDN博客
三.激光SLAM框架学习之A-LOAM框架---项目工程代码介绍---1.项目文件介绍(除主要源码部分)_goldqiu的博客-CSDN博客
四.激光SLAM框架学习之A-LOAM框架---项目工程代码介绍---2.scanRegistration.cpp--前端雷达处理和特征提取_goldqiu的博客-CSDN博客
五.激光SLAM框架学习之A-LOAM框架---项目工程代码介绍---3.laserOdometry.cpp--前端雷达里程计和位姿粗估计_goldqiu的博客-CSDN博客
六.激光SLAM框架学习之A-LOAM框架---项目工程代码介绍---4.laserMapping.cpp--后端建图和帧位姿精估计(优化)_goldqiu的博客-CSDN博客
七.激光SLAM框架学习之A-LOAM框架---速腾Robosense-16线雷达室内建图_goldqiu的博客-CSDN博客
八.激光SLAM框架学习之LeGO-LOAM框架---框架介绍和运行演示_goldqiu的博客-CSDN博客
九.激光SLAM框架学习之LeGO-LOAM框架---速腾Robosense-16线雷达室外建图和其他框架对比、录包和保存数据_goldqiu的博客-CSDN博客
十.激光SLAM框架学习之LeGO-LOAM框架---算法原理和改进、项目工程代码_goldqiu的博客-CSDN博客
十一.激光惯导LIO-SLAM框架学习之LIO-SAM框架---框架介绍和运行演示_goldqiu的博客-CSDN博客
十二.激光SLAM框架学习之livox-loam框架安装和跑数据集_goldqiu的博客-CSDN博客
十三.激光SLAM框架学习之livox-Mid-70雷达使用和实时室外跑框架_goldqiu的博客-CSDN博客
十四.激光和惯导LIO-SLAM框架学习之惯导内参标定_goldqiu的博客-CSDN博客
十五.激光和惯导LIO-SLAM框架学习之惯导与雷达外参标定(1)_goldqiu的博客-CSDN博客
十六.激光和惯导LIO-SLAM框架学习之配置自用传感器实时室外跑LIO-SAM框架_goldqiu的博客-CSDN博客
十七.激光和惯导LIO-SLAM框架学习之IMU和IMU预积分_goldqiu的博客-CSDN博客
十八.多个SLAM框架(A-LOAM、Lego-loam、LIO-SAM、livox-loam)室外测试效果粗略对比分析_goldqiu的博客-CSDN博客
十九.激光和惯导LIO-SLAM框架学习之项目工程代码介绍---代码框架和一些文件解释_goldqiu的博客-CSDN博客
二十.激光、视觉和惯导LVIO-SLAM框架学习之相机内参标定_goldqiu的博客-CSDN博客
二十一.激光、视觉和惯导LVIO-SLAM框架学习之相机与雷达外参标定(1)_goldqiu的博客-CSDN博客
二十二.香港大学火星实验室R3LIVE框架跑官方数据集_goldqiu的博客-CSDN博客
二十三.激光和惯导LIO-SLAM框架学习之LIO-SAM项目工程代码介绍---基础知识_goldqiu的博客-CSDN博客
FAST-LIO2是香港大学火星实验室推出的高效固态LiDAR 惯性里程计框架,使用紧耦合的迭代扩展卡尔曼滤波器将固态LiDAR 特征与 IMU 数据融合,以允许在发生退化的快速运动或杂乱环境中进行鲁棒导航。相较第一代版本FAST-LIO,第二代使用ikd-Tree进行点云增量索引进行特征匹配,提高了计算速度,实现100Hz的速率,并且支持更多的LiDAR。
论文地址:https://arxiv.org/abs/2010.08196
在ubuntu18.04和ros-melodic环境下测试成功:
git clone https://github.com/Livox-SDK/livox_ros_driver.git
并需要先安装Livox-SDK,然后放在一个工作空间跟FAST-LIO包一起编译。
2.下载FAST-LIO包并编译,这里要进行版本更新的原因是要下载ikd-Tree源文件,如果没下载也可以自己下载。
cd ~/$A_ROS_DIR$/src
git clone https://github.com/hku-mars/FAST_LIO.git
cd FAST_LIO
git submodule update --init
cd ../..
catkin_make
source devel/setup.bash
3.运行,跑官方数据集
roslaunch fast_lio mapping_avia.launch
rosbag play YOUR_DOWNLOADED.bag
4.效果如下:
5.保存pcd
avia.yaml中pcd_save_en参数默认是true,运行后pcd会保存在pcd文件中。
common:
lid_topic: "/livox/lidar"
imu_topic: "/livox/imu"
time_sync_en: false # ONLY turn on when external time synchronization is really not possible
preprocess:
lidar_type: 1 # 1 for Livox serials LiDAR, 2 for Velodyne LiDAR, 3 for ouster LiDAR,
scan_line: 6
blind: 4
mapping:
acc_cov: 0.1
gyr_cov: 0.1
b_acc_cov: 0.0001
b_gyr_cov: 0.0001
fov_degree: 90
det_range: 450.0
extrinsic_est_en: false # true: enable the online estimation of IMU-LiDAR extrinsic
extrinsic_T: [ 0.04165, 0.02326, -0.0284 ]
extrinsic_R: [ 1, 0, 0,
0, 1, 0,
0, 0, 1]
publish:
path_en: false
scan_publish_en: true # false: close all the point cloud output
dense_publish_en: true # false: low down the points number in a global-frame point clouds scan.
scan_bodyframe_pub_en: true # true: output the point cloud scans in IMU-body-frame
pcd_save:
pcd_save_en: true
interval: -1 # how many LiDAR frames saved in each pcd file;
# -1 : all frames will be saved in ONE pcd file, may lead to memory crash when having too much frames.
http://6.CC显示如下: