- docker的staut一直是exit1_Docker随笔记—docker run执行后,容器的状态是Exited的一些困惑...
长颈鹿很忙
问题:运行dockerrun-itd-p5000:5000localregistryregistry:2.5/bin/bash命令后,发现容器并没有跑起来,而是变成了Exit状态。如果将末尾的/bin/bash去掉,容器就能正常的start了解决:翻看不少docker资料,到目前位置,对导致此问题的出现算是有了一个比较清晰的认识。1.容器的生命周期。要把docer容器看做是一个单独的进程。它不是一
- ElasticSearch11-8.x 新特性
李宥小哥
常用中间件中间件
零、文章目录ElasticSearch11-8.x新特性1、API变更(1)类型(_type)移除在Elasticsearch8.x中,索引中的_type已经被完全移除。这意味着所有文档在同一个索引中将不再区分类型,简化了索引结构,但同时也要求开发者调整应用程序逻辑以适应这一变化。(2)客户端库更新Elasticsearch8.x不再支持rest-high-level-client,而是推荐使用新
- 设计模式简介
智想天开
设计模式技术文章设计模式
本文章为原创,禁止未经授权的转载。对应公众号地址:设计模式简介,更多内容请关注公众号:智想天开1.什么是设计模式?设计模式是一套被反复使用、多数人知晓的、经过分类编目的代码设计经验。它们不是具体的代码,而是解决特定类型问题的通用方案。设计模式旨在提供一种高效、可维护和可扩展的方式来构建软件系统。关键点:重用:通过使用设计模式,可以避免重复造轮子,提升开发效率。沟通:设计模式提供了标准化的术语,促进
- Python 数据建模完整流程指南
木觞清
3天入门Pythonpython开发语言
在数据科学和机器学习中,建模是一个至关重要的过程。通过有效的数据建模,我们能够从原始数据中提取有用的洞察,并为预测或分类任务提供支持。在本篇博客中,我们将通过Python展示数据建模的完整流程,包括数据准备、建模、评估和优化等步骤。1.导入必要的库在进行任何数据分析或建模之前,首先需要导入必需的Python库。这些库提供了各种工具和算法,帮助我们更高效地完成任务。importnumpyasnpim
- 我学会了整理房间
tailwind-css
讲述自己学会整理房间的过程。以前,我的房间总是乱糟糟的,书本、玩具、衣服到处乱扔。有一次,妈妈让我自己整理房间,我开始学着把书本放进书架,把玩具放进玩具箱,把衣服叠整齐放进衣柜。整理完后,房间变得整洁又舒适。通过整理房间,我学会了分类和收纳,也养成了良好的生活习惯。
- nlp培训重点-3
heine162
自然语言处理人工智能
1.文本匹配分类:loader:#-*-coding:utf-8-*-importjsonimportreimportosimporttorchimportrandomimportloggingfromtorch.utils.dataimportDataset,DataLoaderfromcollectionsimportdefaultdictfromtransformersimportBertT
- 随机森林分类算法原理与实验分析
ningaiiii
机器学习与深度学习随机森林分类算法
随机森林分类算法原理与实验分析1.引言随机森林(RandomForest)是一种集成学习方法,它通过构建多个决策树并结合它们的预测结果来进行分类。你可以把它想象成一个“团队决策”的过程:团队中的每个成员(决策树)都独立发表意见,最后通过投票决定最终结果。这种方法不仅提高了模型的准确性,还增强了模型的稳定性和鲁棒性。随机森林的主要特点是通过随机选择样本和特征来构建多个决策树,从而避免单棵决策树可能产
- 集团公司L1-L5级流程框架方法论:(1)L1级流程:为业务价值链,是业务流程的主干; (2)L2级流程:为运作模式层面的业务子流程,因场景不同而差异化; (3)L3级流程:为实现运营模式所需的业
公众号:优享智库
数字化转型数据治理主数据数据仓库大数据
集团公司L1-L5级流程框架方法论集团公司L1-L5级流程框架方法论L1级流程:业务价值链定义与作用构成要素与其他流程关系案例分析L2级流程:运作模式层面业务子流程场景差异化原因子流程分类与特点跨场景协同策略案例分析L3级流程:业务能力与业务活动业务能力定义及要求业务活动类型与目的与IT系统关系澄清案例分析L4级流程:业务与IT系统交互过程/工作流交互过程描述方法工作流设计原则常见问题与解决方案案
- 行为识别的方法
人工智能专属驿站
深度学习
行为识别主要有以下几大类方法,每类方法各有特点及典型算法:传统方法特点:利用手工设计特征对行为进行表征,再用统计学习的分类方法进行识别。需一定专业知识设计特征,耗费人力物力,对复杂场景、遮挡等适应性差,但对简单背景、规则动作识别效果尚可。典型算法:时空关键点(Space-TimeInterestPoints):基于视频图像中的关键点在时空维度上的变化来提取动作特征,但可能忽略视频细节,泛化能力较弱
- Python AI教程之二十一:监督学习之支持向量机(SVM)算法
潜洋
人工智能Python中级支持向量机算法机器学习python
支持向量机(SVM)算法支持向量机(SVM)是一种功能强大的机器学习算法,广泛用于线性和非线性分类以及回归和异常值检测任务。SVM具有很强的适应性,适用于各种应用,例如文本分类、图像分类、垃圾邮件检测、笔迹识别、基因表达分析、人脸检测和异常检测。SVM特别有效,因为它们专注于寻找目标特征中不同类别之间的最大分离超平面,从而使其对二分类和多分类都具有鲁棒性。在本大纲中,我们将探讨支持向量机(SVM)
- 构建决策树对于流失用户进行分类
努力学习中的阿达
最近被分配到商业分析组配合商业分析师对流失掉的客户进行研究。我最先接到的任务是根据客服部门记录的客户的流失原因,对于这些客户的流失原因做分类。商业分析师给我提供了23个类别,要求我把客户都分到这些类中。最开始我企图通过建立关键词规则,比如包含某些单词或者不包含某些单词,但是实际上发现分类的结果很差,规则首先不完备,并且彼此还可能冲突,分类的结果当然就很差。于是我就想到可以利用文本挖掘的方法,对于客
- QT正则表达式的使用
康闯
正则表达式qt开发语言
一、背景使用QT开发项目时,经常需要去对字符串进行操作,一般来说我们都会想到的是使用自己写的逻辑+QString的一些函数进行实现。其实qt给我们提供了一个更好的方式去实现,那就是QRegExp对象,使用正则表达式来操作字符串。只要我们会用,能用好,就能在软件开发中起到事半功倍的效果,而不是苦逼自己去实现一段段自己都觉得不靠谱的代码。对于正则表达式的使用做一下分类,主要分为以下类型(官网内容):用
- 超简单|Python实现机器学习算法——KNN
birdcome
python机器学习KNN算法
超简单|Python实现机器学习算法——KNNKNN算法简介算法实现步骤如何用python实现KNN算法Scikit-learn算法库实现KNN分类器Sklearn建模流程KNN算法简介KNN算法(k近邻算法)是一种有监督分类算法,它的原理非常简单,下面以一个简单的例子引入。已知两种酒的标签:赤霞珠和黑皮诺,在这个情景中,我们对酒进行分类的依据是酒精浓度和颜色深度,如下图所示:红色代表赤霞珠,紫色
- Transformer 架构对比:Dense、MoE 与 Hybrid-MoE 的优劣分析
XianxinMao
transformer架构深度学习
1.LLM基础架构类型DenseTransformerMoE(MixtureofExperts)TransformerHybrid-MoETransformer2.Transformer按照编码方式分类单向自回归模型(如早期GPT系列)双向模型(如BERT)编码器-解码器模型(如BART,T5)DenseTransformerDenseTransformer的优势是什么DenseTransform
- 联想电脑尺寸在哪里看_联想笔记本电脑型号查看方式、含义介绍【图文教程】...
花旗甲比丹
联想电脑尺寸在哪里看
联想笔记本电脑型号看上去似乎没有规律,其实这是联想对不同功能设置、价格参数等等几个板块信息的分类。因此,了解联想笔记本电脑型号的含义就能够筛选出最适合自己的一款产品。那么接下来小编就要为大家详细介绍关于联想笔记本电脑型号的三个板块的文字图片信息。它们分别是联想笔记本电脑型号的查看方式、含义分析以及介绍这三个板块文字图片内容的信息。一、联想笔记本电脑型号在哪里看查看联想笔记本电脑型号,有如下2种方法
- 基于物联网的智能垃圾桶系统设计与实现-设计说明书
黄油味椭圆
基础版资料物联网
设计摘要:本设计是基于物联网的智能垃圾桶,旨在有效解决垃圾分类与垃圾清理的问题。该智能垃圾桶采用了多种传感器模块,如压力传感器模块、GPS定位模块、人体红外模块以及超声波测距模块等,以实现对垃圾桶内垃圾重量、位置、高度以及人体通过情况的实时监测和数据采集。同时,该智能垃圾桶还配备了电机模块,可以模拟垃圾桶的开盖和关闭,当垃圾桶装满时不会自动打开,而是当有人靠近时才会自动开启,并通过语音播报告知人们
- 【YOLOv8改进- Backbone主干】YOLOv8更换主干网络之ConvNexts,纯卷积神经网络,更快更准,,降低参数量!
YOLO大师
YOLO网络cnn目标检测论文阅读yolov8
YOLOv8目标检测创新改进与实战案例专栏专栏目录:YOLOv8有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLOv8基础解析+创新改进+实战案例介绍摘要视觉识别的“咆哮20年代”开始于视觉Transformer(ViTs)的引入,ViTs迅速取代了卷积神经网络(ConvNets)成为最先进的图像分类模型。然而,普通的ViT在应用于诸
- 数智化转型 | 星环科技Defensor 助力某银行数据分类分级
数据库
在数据驱动的金融时代,数据安全和隐私保护的重要性日益凸显。某银行作为数字化转型的先行者,面临着一项艰巨的任务:如何高效、准确地对分布在多个业务系统、业务库与数仓数湖中的约80万个字段进行数据分类和分级。该银行借助星环科技数据安全管理平台Defensor的智能化数据分类分解解决方案,实现数据安全管理的革命性进步。业务背景与挑战该银行拥有十几个业务系统,产生的数据量庞大,且分布在不同的业务库和数仓数湖
- C++设计模式学习
痛&快乐着
C++学习设计模式c++设计模式
文章目录1.什么是设计模式2.设计模式分类2.1创建型模式2.2结构型模式2.3行为型模式3.设计模式七大原则(OOP原则)3.1开闭原则3.2里氏替换原则3.3依赖倒置原则3.4单一职责原则3.5接口隔离原则3.6迪米特法则3.7合成复用原则4.常用设计模式例子4.1工厂模式4.2单例模式4.3策略模式4.4适配器模式4.5模板方法模式4.6外观模式4.7桥接模式4.8代理模式5.总结参考文献1
- Python pandas离散化方法优化与应用实例
python慕遥
Python数据分析Pandas数据科学pythonpandas机器学习
大家好,在数据分析中,离散化是将连续数据划分为不同区间的一种重要方法。这种方法可以更好地理解数据分布、简化分析、或在分类建模中对特征进行转换。在Python的Pandas库中,cut和qcut是两个强大的工具,分别用于基于固定区间和基于分位数对数据进行离散化。它们的灵活性和易用性使其在数据处理过程中十分常用。离散化可以将复杂的连续数据转化为更直观的区间,帮助快速发现数据分布规律,并且在机器学习中,
- dice系数 交叉熵_一文搞懂交叉熵损失
weixin_39721853
dice系数交叉熵
本文从信息论和最大似然估计得角度推导交叉熵作为分类损失函数的依据。从熵来看交叉熵损失信息量信息量来衡量一个事件的不确定性,一个事件发生的概率越大,不确定性越小,则其携带的信息量就越小。设\(X\)是一个离散型随机变量,其取值为集合\(X={x_0,x_1,\dots,x_n}\),则其概率分布函数为\(p(x)=Pr(X=x),x\inX\),则定义事件\(X=x_0\)的信息量为:\[I(x_0
- 【机器学习实战入门项目】基于机器学习的鸢尾花分类项目
精通代码大仙
数据挖掘python深度学习机器学习分类人工智能大数据数据挖掘算法python
基于机器学习的鸢尾花分类项目介绍:本项目利用机器学习模型对鸢尾花进行分类。鸢尾花数据集是一个著名的机器学习数据集,包含三种类别的花朵:Setosa、Versicolor和Virginica,每种类别由四个特征描述:萼片长度、萼片宽度、花瓣长度和花瓣宽度。什么是机器学习?机器学习是关于从数据中学习预测或提取知识的过程。它是人工智能的一个子领域。机器学习算法基于样本数据(即训练数据)构建模型,并根据训
- 交叉熵损失与二元交叉熵损失:区别、联系及实现细节
专业发呆业余科研
深度模型底层原理人工智能深度学习python
在机器学习和深度学习中,交叉熵损失(Cross-EntropyLoss)和二元交叉熵损失(BinaryCross-EntropyLoss)是两种常用的损失函数,它们在分类任务中发挥着重要作用。本文将详细介绍这两种损失函数的区别和联系,并通过具体的代码示例来说明它们的实现细节。交叉熵损失(Cross-EntropyLoss)常用于多类分类问题,即每个样本只能属于一个类别,但总类别数量较多。例如,在手
- 【机器学习:三十一、推荐系统:从基础到应用】
KeyPan
机器学习机器学习人工智能决策树算法深度学习
1.推荐系统概述推荐系统是一种根据用户的兴趣和偏好,为用户提供个性化建议的技术,广泛应用于电子商务、流媒体平台和社交媒体等领域。通过分析用户行为数据,推荐系统可以帮助用户发现他们感兴趣的内容,同时提升平台的用户体验和商业收益。定义与作用推荐系统是一种数据过滤技术,旨在从海量数据中筛选出用户可能感兴趣的信息。它不仅能提升用户的满意度,还能增加平台的转化率和黏性。分类推荐系统主要分为以下三类:基于内容
- 使用 AI 在医疗影像分析中的应用探索
摘要医疗影像分析是AI在医疗领域的重要应用方向,能够提高诊断效率,减少误诊率。本文将深入探讨AI技术在医疗影像数据分析中的应用,包括核心算法、关键实现步骤和实际案例,并提供一个基于卷积神经网络(CNN)的图像分类Demo。引言随着医疗影像数据的爆炸式增长,传统的人工分析已无法满足高效、精准诊断的需求。AI技术通过深度学习算法,在医疗影像的识别、分类和标注中发挥了重要作用。本文章将结合技术实现与案例
- 【机器学习】主动学习-增加标签的操作方法-样本池采样(Pool-Based Sampling)
IT古董
机器学习机器学习学习人工智能
Pool-BasedSamplingPool-basedsampling是一种主动学习(ActiveLearning)方法,与流式选择性采样不同,它假设有一个预先定义的未标注样本池,算法从中选择最有价值的样本进行标注,以提升模型的性能。这种方法广泛应用于需要人工标注的场景,例如文本分类、图像识别等。核心思想预先准备一个未标注数据池(UnlabeledDataPool)。使用初始标注数据训练一个模型
- Pytorch实现猫狗分类
NoKnowovo
Pythonpytorch分类人工智能
在进行编码之前,确保已经安装好Pytorch以及相关依赖环境模型定义构建构建一个较为简单的卷积神经网络模型#定义神经网络模型classCatDogClassifier(nn.Module):def__init__(self):super(CatDogClassifier,self).__init__()self.conv1=nn.Conv2d(3,16,kernel_size=5,stride=1
- 学习HTML5总结(一)
大学生努力学习
学习web前端html5
目录Web的构成一、HTML——结构1、html基本的骨架和解释2、标签1、标签2、属性3、标签的分类4、实体字符5、列表6、超链接7、文件的路径3、选择器1、基础选择器2、复合选择器3、关系选择器4、属性选择器5、伪类选择器6、伪元素选择器3、html中的单位1、长度单位2、比例单位3、颜色单位4、CSS三大特征二、CSS——表现三、JavaScript——行为总结Web的构成一、HTML——结
- 神经网络基础-价格分类案例
dwjf321
深度学习神经网络人工智能神经网络分类人工智能
文章目录1.需求分析2.导入所需工具包3.构建数据集4.构建分类网络模型5.训练模型6.模型训练7.评估模型8.模型优化学习目标:掌握构建分类模型流程动手实践整个过程1.需求分析小明创办了一家手机公司,他不知道如何估算手机产品的价格。为了解决这个问题,他收集了多家公司的手机销售数据。该数据为二手手机的各个性能的数据,最后根据这些性能得到4个价格区间,作为这些二手手机售出的价格区间。主要包括:bat
- 【YashanDB知识库】druid连接池做断网测试,无法自动重新连接
数据库
本文内容来自YashanDB官网,原文内容请见https://www.yashandb.com/newsinfo/7919216.html?templateId=171...【标题】druid连接池断网测试,崖山数据库无法自动重新连接【问题分类】驱动使用【关键字】druid,sockettimeout【问题描述】使用崖山数据库23.2.7.100进行适配过程中反馈崖山数据库不能自动重连【问题原因分
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。