- Yuan 2.0-M32 是一个基于 Yuan 2.0 架构的双语混合专家 (MoE) 语言模型,旨在以更少的参数和计算量实现更高的准确率
东方佑
量子变法架构语言模型人工智能
主要创新点:注意力路由器(AttentionRouter):提出了一种新的路由器网络,考虑了专家之间的相关性,从而提高了模型的准确率。高效计算:使用MoE架构,40B总参数中仅有3.7B激活参数,训练计算消耗仅为同规模密集模型的9.25%,推理成本与3.7B参数的密集模型相当。性能优异:在代码生成、数学解题、科学知识和推理等多个领域展现出与Llama3-70B等大型模型相当甚至更优的性能。模型结构
- Flink Standalone集群模式安装部署全攻略
自节码
java面试开发语言flink大数据
FlinkStandalone集群模式安装部署全攻略一、引言Flink作为一款强大的分布式流处理和批处理框架,在大数据领域有着广泛的应用。本文将详细介绍FlinkStandalone集群模式的安装部署过程,帮助大家快速搭建起开发测试环境。二、安装前准备首先,确保已经安装好了Hadoop环境(因为后续配置中涉及到与Hadoop的集成)。三、安装步骤(一)环境准备退出conda的base环境(如果存在
- 缓存增强生成(CAG)对比检索增强生成(RAG):谁才是大语言模型的最优解?
人工智能
缓存增强生成(CAG)对比检索增强生成(RAG):谁才是大语言模型的最优解?1.前期准备:RAG与KV-Cache(CAG)RAG是什么RAG是一种检索增强生成方法,它利用检索器查找相关文档,然后将这些文档传递给大语言模型,以生成最终答案。优势处理大型或频繁更新的数据集时,无需一次性加载全部内容。避免了大量提示信息导致的截断或上下文过载问题。关键局限增加了检索步骤,可能会导致速度变慢。通常依赖外部
- 为什么尽量避免使用 `IN` 和 `NOT IN`?
数据库数据库性能优化后端
为什么尽量避免使用IN和NOTIN?前言在SQL查询中,IN和NOTIN是常用的关键字,用于筛选符合条件的数据。然而,尽管它们使用方便,但在某些情况下,使用它们可能会导致效率低下或查询结果不准确。本文将从效率和潜在问题两个角度,深入探讨为什么应尽量避免使用IN和NOTIN,并提供替代方案。一、效率问题1.NOTIN的性能瓶颈在SQL查询中,NOTIN往往会导致性能问题,尤其是在处理大数据集时。以下
- Elasticsearch集群架构:构建高效、可扩展的搜索平台
detayun
Elasticsearchelasticsearch架构大数据
在当今大数据和云计算的时代,高效、实时的数据检索能力成为了企业核心竞争力的重要组成部分。Elasticsearch,作为一款基于Lucene构建的开源搜索引擎,以其强大的全文搜索能力、灵活的扩展性和丰富的功能特性,成为了众多企业首选的数据搜索和分析平台。本文将深入探讨Elasticsearch集群的架构设计,帮助您更好地理解和构建高效、可扩展的搜索解决方案。一、Elasticsearch简介Ela
- 随机森林(Random Forest)预测模型及其特征分析(Python和MATLAB实现)
追蜻蜓追累了
深度学习机器学习python随机森林大数据回归算法算法
##一、背景在大数据和机器学习的快速发展时代,数据的处理和分析变得尤为重要。随着多个领域积累了海量数据,传统的统计分析方法常常无法满足复杂问题的需求。在这种背景下,机器学习方法开始广泛应用。随机森林(RandomForest)作为一种强大的集成学习方法,因其高效性和较强的泛化能力而备受关注。随机森林最初由LeoBreiman在2001年提出,基于决策树这一基本分类模型。其基本思想是通过构建多个决策
- 大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据官,数据科学家 )
小Tomkk
大数据大数据数据挖掘首席数据官数据合规师数据安全数据科学家
大数据相关职位介绍之三(数据挖掘,数据安全,数据合规师,首席数据官,数据科学家)文章目录大数据相关职位介绍之三(数据挖掘,数据安全,数据合规师,首席数据官,数据科学家)1.数据挖掘工程师(DataMiningEngineer)2.数据安全工程师(DataSecurityEngineer)3.数据合规师(DataComplianceOfficer)4.首席数据官(CDO-ChiefDataOffic
- 流媒体娱乐服务平台在AWS上使用Presto作为大数据的交互式查询引擎的具体流程和代码
weixin_30777913
aws大数据python音视频
一家流媒体娱乐服务平台拥有庞大的用户群体和海量的数据。为了高效处理和分析这些数据,它选择了Presto作为其在AWSEMR上的大数据查询引擎。在AWSEMR上使用Presto取得了显著的成果和收获。这些成果不仅提升了数据查询效率,降低了运维成本,还促进了业务的创新与发展。实施过程:Presto集群部署:在AWSEMR上部署了Presto集群,该集群与HiveMetastore和AmazonS3集成
- 动手学PyTorch建模与应用:从深度学习到大模型
王国平
pytorch人工智能数据分析python数据挖掘
在人工智能时代,机器学习技术日新月异,深度学习是机器学习领域中一个全新的研究方向和应用热点,它是机器学习的一种,也是实现人工智能的必由之路。深度学习的出现不仅推动了机器学习的发展,而且促进了人工智能技术的革新,已经被成功应用在语音识别、图像分类识别、地球物理、大语言模型等领域,具有巨大的发展潜力和价值。本书是一本带领读者快速学习PyTorch并将其运用于深度学习建模方向的入门指南,重点介绍了基于P
- AI浪潮下程序员的职业转型与技术进阶之路
nbsaas-boot
人工智能
一、引言1.1研究背景与意义在科技飞速发展的当今时代,人工智能(AI)无疑是最为耀眼的技术领域之一。从早期简单的专家系统到如今复杂的深度学习模型,AI技术经历了从理论探索到广泛应用的巨大跨越,正以前所未有的速度改变着我们的生活和工作方式。近年来,AI技术取得了一系列突破性进展。以GPT系列为代表的大型语言模型,展现出强大的自然语言处理能力,能够实现文本生成、对话交互、代码编写等多种任务。根据《20
- 算法基础——一致性
黄雪超
大数据基础#算法基础大数据算法一致性
引入最早研究一致性的场景既不是大数据领域,也不是分布式系统,而是多路处理器。可以将多路处理器理解为单机计算机系统内部的分布式场景,它有多个执行单元,每一个执行单元都有自己的存储(缓存),一个执行单元修改了自己存储中的一个数据后,这个数据在其他执行单元里面的副本就面临数据一致的问题。随着时代发展,互联网公司的快速发展,单机系统在计算和存储方面都开始面临瓶颈,分布式是一个必然的选择,但是这也进一步放大
- 大数据(一)MaxCompute
胖当当技术
架构云计算odps学习大数据
一、引言作者后面会使用MaxCompute,所以在进行学习研究,总会有一些疑问产生,这里讲讲作者的疑问和思路二、介绍MaxCompute(原名ODPS-OpenDataProcessingService)是阿里云提供的大数据处理平台,专门用于批量数据存储和大规模并行计算。它广泛应用于数据分析和处理任务,为企业级数据处理提供高效的解决方案。下面是MaxCompute的一些主要功能和应用场景:大规模数
- DeepSeek的出现对全球GPT产业产生的冲击
不要em0啦
机器学习gpt
引言近年来,人工智能技术的迅猛发展推动了自然语言处理(NLP)领域的革命性进步。特别是以GPT(GenerativePre-trainedTransformer)系列模型为代表的大规模预训练语言模型,已经在全球范围内引发了广泛关注和应用。然而,随着技术的不断演进,新兴的GPT模型如DeepSeek的出现,正在对全球GPT产业产生深远的影响。本文将从技术、市场、应用场景和产业生态等多个维度,深入探讨
- 猫眼大数据开发面试题及参考答案
大模型大数据攻城狮
数据仓库大数据数据开发窗口函数hive外部表维度建模数仓分层
Java基本数据类型有哪些?包装类型又是什么?Java的基本数据类型是Java语言中最基础的数据类型,它们用于存储简单的值。Java的基本数据类型主要分为以下几类:整型byte:占1个字节,取值范围是-128到127,通常用于节省内存的场景,比如处理文件或网络数据时,存储一些小的整数值。short:占2个字节,取值范围是-32768到32767,使用场景相对较少,但在某些需要节省内存且数值范围不大
- ChatGPT-4o和ChatGPT-4o mini的差异点
老六哥_AI助理指南
人工智能chatgpt
在人工智能领域,OpenAI再次引领创新潮流,近日正式发布了其最新模型——ChatGPT-4o及其经济实惠的小型版本ChatGPT-4oMini。这两款模型虽同属于ChatGPT系列,但在性能、应用场景及成本上展现出显著的差异。本文将通过图文并茂的方式,深入解析两者之间的不同点。一、性能差异ChatGPT-4o:全能型语言模型多模态处理能力:ChatGPT-4o不仅限于文本处理,更能够实时处理和生
- 探索自然语言处理的前沿:使用OpenAI API进行文本分析
qq_37836323
自然语言处理easyui人工智能python
#引言自然语言处理(NLP)是人工智能领域中最令人兴奋和快速发展的部分之一。本文将介绍如何使用OpenAI的API进行文本分析。我们将通过代码示例,深入探讨如何利用这些工具来提升应用程序的智能和功能。#主要内容##什么是OpenAIAPI?OpenAIAPI提供了强大的自然语言处理能力,能够帮助开发者在自己的应用中集成先进的语言模型。这些模型可以用于文本生成、情感分析、翻译等多种任务。##使用AP
- 机器学习—大语言模型:推动AI新时代的引擎
云边有个稻草人
人工智能机器学习语言模型
云边有个稻草人-CSDN博客目录引言一、大语言模型的基本原理1.什么是大语言模型?2.Transformer架构3.模型训练二、大语言模型的应用场景1.文本生成2.问答系统3.编码助手4.多语言翻译三、大语言模型的最新进展1.GPT-42.开源模型四、构建和部署一个简单的大语言模型1.数据准备2.模型训练3.部署模型五、大语言模型的未来发展结语引言大语言模型(LargeLanguageModels
- 基于Java的智能家居设计:探讨Java在智能家居大数据处理中的角色
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
基于Java的智能家居设计:探讨Java在智能家居大数据处理中的角色关键词:智能家居,Java,大数据处理,机器学习,物联网1.背景介绍1.1问题由来随着物联网技术的发展,智能家居已经从一个概念转变为现实。通过连接各种家庭设备,智能家居系统能够实现自动化控制、远程监控、个性化服务等功能。然而,这些功能背后隐藏着一个庞大的数据处理和管理系统,即大数据处理系统。这些系统需要高效、可靠的计算平台,而Ja
- DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力
davenian
评论语言模型人工智能深度学习DeepSeek
论文链接:[2501.12948]DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning实在太长,自行扔到Model里,去翻译去提问吧。工作原理:主要技术,就是训练出一些专有用途小模型,来帮助大模型训练。主要技术:1.强化学习(RL)核心是强化学习技术,像训练小狗一样,当模型做出正确的推理步骤或得到正确的
- 大数据相关职位介绍之二(数据治理,数据库管理员, 数据资产管理师,数据质量专员)
小Tomkk
大数据大数据数据治理数据库管理员数据资产管理师数据质量专员
大数据相关职位介绍之二(数据治理,数据库管理员,数据资产管理师,数据质量专员)文章目录大数据相关职位介绍之二(数据治理,数据库管理员,数据资产管理师,数据质量专员)数据治理工程师/专家(DataGovernanceEngineer/Expert)1.元数据管理师(MetadataManager)2.主数据管理师(MasterDataManager)数据库管理员(DBA-DatabaseAdmini
- ️ 在 Windows WSL 上部署 Ollama 和大语言模型的完整指南20241206
Narutolxy
技术干货分享智浪初航windows语言模型人工智能
️在WindowsWSL上部署Ollama和大语言模型的完整指南引言随着大语言模型(LLM)和人工智能的飞速发展,越来越多的开发者尝试在本地环境中部署大模型进行实验。然而,由于资源需求高、网络限制多以及工具复杂性,部署过程常常充满挑战。本指南基于实际经验,详细讲解如何在WindowsWSL(WindowsSubsystemforLinux)上部署Ollama和大语言模型,同时解决端口转发等常见痛点
- Oracle 分区在什么情况下使用?思维导图 代码示例(java 架构)
用心去追梦
oraclejava架构
Oracle分区的适用场景Oracle分区(Partitioning)是一种强大的数据管理工具,适用于特定类型的数据库工作负载和数据结构。以下是一些适合使用分区的情况:1.大型表优化超大数据量:当表包含数百万甚至数十亿行时,分区可以帮助提高查询性能。频繁更新:对于经常被插入、更新或删除的数据,分区可以减少锁定范围,提高并发性。2.数据仓库历史数据分析:在数据仓库中,通常会存储多年的历史数据。通过按
- 深度学习:基于MindNLP的RAG应用开发
Landy_Jay
深度学习人工智能
什么是RAG?RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合检索(Retrieval)和生成(Generation)的技术,旨在提升大语言模型(LLM)生成内容的准确性、相关性和时效性。基本思想:通过外部知识库动态检索与用户查询相关的信息,并将检索结果作为上下文输入生成模型,辅助生成更可靠的回答。与传统LLM的区别:传统LLM仅依赖预训练参数中的静态知
- 【爬虫】JS逆向解决蝉妈妈加密参数data
秋无之地
爬虫JS逆向python爬虫js逆向
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️作者:秋无之地简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。欢迎小伙伴们点赞、收藏⭐️、留言、关注,关注必回关目录一、先打开目标网站,打开F12调试模式二、通过刷新页面定位接口,并找到接口上的加密参数data三、打开启动器(Initiator)
- 基于CNN(一维卷积Conv1D)+LSTM+Attention 实现股票多变量时间序列预测(PyTorch版)
矩阵猫咪
cnnlstmpytorch注意力机制卷积神经网络长短期记忆网络Attention
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。在深度学习的众多模型中,卷积神经网络(CNN)和长短期记忆网络(LSTM)因其独特的优势
- 大型语言模型(LLM)压缩技术:如何让庞然大物更轻巧?
空间机器人
LLM语言模型学习笔记语言模型人工智能自然语言处理
大型语言模型(LLM)压缩技术:如何让庞然大物更轻巧?随着大模型在各个领域的广泛应用,我们面临的一个核心问题是——如何让这些庞大的模型在硬件资源有限的环境下运行?这就需要我们运用一系列的技术来“压缩”这些模型,使其在保持精度的同时,能够适应不同的硬件设备。那么,LLM压缩到底是如何实现的呢?让我们从几个关键技术开始讲解:剪枝(Pruning)、知识蒸馏(KnowledgeDistillation)
- Windows下Go语言环境搭建和使用
go语言学习基地
GO语言学习golangwindows开发语言
简介go语言是一种开源的、语法精简的静态编程语言,它的开源社区比较庞大,应用场景非常广范。可以用于系统监控、容器技术(Docker)、大数据、存储技术、分布式系统(HyperledgerFabric)、消息系统(Kafka客户端)、服务器管理、安全工具、Web工具等。这里介绍在Linux上安装并配置go。下载go安装包到GoLang中国:https://golang.google.cn/dl/下载
- M-Ped: Multi-Prompt Ensemble Decoding for Large Language Models
UnknownBody
LLMDailyLLMPromptprompt语言模型人工智能
本文是LLM系列文章,针对《M-Ped:Multi-PromptEnsembleDecodingforLargeLanguageModels》的翻译。M-Ped:大型语言模型的多提示集成解码摘要1引言2方法3实验4研究5相关工作6结论摘要随着大型语言模型(LLMs)在自然语言处理(NLP)领域的广泛应用,提高其性能已成为研究热点。本文提出了一种新的多提示集成解码方法,旨在通过利用多个提示的结果聚合
- SlimGPT: Layer-wise Structured Pruning for Large Language Models
UnknownBody
LLMDailyLLMPruning剪枝语言模型人工智能
本文是LLM系列文章,针对《SlimGPT:Layer-wiseStructuredPruningforLargeLanguageModels》的翻译。SlimGPT:大型语言模型的分层结构化修剪摘要1引言2相关工作3前言4方法5实验6结论摘要大型语言模型(LLM)因其在各个领域的卓越能力而受到广泛关注,其巨大的参数规模为实际部署带来了挑战。结构化修剪是一种平衡模型性能和效率的有效方法,但在计算资
- 多租户架构未提供统一的安全策略和框架,导致安全策略不一致
图幻未来
网络安全
多租户架构下的网络安全分析与AI技术应用在云计算和大数据技术的快速发展背景下,多租户架构已成为企业应用的首选。多租户架构允许多个独立的应用共享同一套基础架构和资源池,从而降低了企业的运营成本。然而,多租户架构在给企业带来便利的同时,也面临着一系列安全挑战。本文将围绕多租户架构未提供统一的安全策略和框架导致安全策略不一致的问题展开分析,并探讨AI技术在网络安全领域的应用场景。一、多租户架构下的安全挑
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&