井盖、店杆、光交箱、通信箱、标石等为城市中常见部件,在方便居民生活的同时,因为后期维护的不及时往往会出现一些“井盖吃人”、“线杆、电杆、线缆伤人”事件。造成这类问题的原因是客观的多方面的,这也是城市化进程不断发展进步的过程中难以完全避免的问题,相信随着城市化的发展完善相应的问题会得到妥善解决。本文的核心目的并不是要来深度分析此类问题形成的深度原因等,而是考虑如何从技术的角度来助力此类问题的解决,这里我们的核心思想是想要基于实况的数据集来开发构建自动化的检测识别模型,对于摄像头所能覆盖的视角内存在的对应设施部件进行关注计算,后期,在业务应用层面可以考虑设定合理的规则和预警逻辑,结合AI的自动检测识别能力来对可能出现的损坏、倒塌、折断等问题进行及时的预警,通知到相关的工程技术人员来进行维护处理,在源头端尽可能地降低可能的损害,感觉这是一个不错的技术与实际生活场景相结合的落地点。
在前文中我们已经进行了相关的项目开发实践,感兴趣的话可以自行移步阅读:
《助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于DETR(DEtection TRansformer)开发构建生活场景下城市部件检测识别系统》
《助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于YOLOv3开发构建生活场景下城市部件检测识别系统》
本文主要是选择YOLOv4来开发实现检测模型,首先看下实例效果:
YOLOv4比YOLOv3多了CSP和PAN结构,YOLOv4使用CSPDarknet53作为backbone,加上SPP模块、PANet作为网络的颈部,Head部分仍采用YOLOv3的结构。
总结一下YOLOv4的基本组件,总共5个:
CBM:YOLOv4的网络结构中最小的组件,由Conv+BN+Mish激活函数组成
CBL:由Conv+Bn+Leaky_relu激活函数组成。
Res Unit:残差结构,类似ResNet
CSPX:由三个卷积层和X个Res Unit模块concate组成
SPP:采用1×1,5×5,9×9,13×13的最大池化方式,进行多模融合
Yolov4集成了当时领域内的一些Tricks如:WRC、CSP、CmBN、SAT、Mish激活、Mosaic数据增强、DropBlock和CIoU通过实验对模型的精度和速度进行了平衡.YOLOv4借鉴了CSPNet(Cross Stage Partial Networks,跨阶段局部网络)的思想,对YOLOv3的Darknet53网络进行了改进,形成了全新的主干网路结构--CSPDarknet53,CSPNet实际上是基于Densnet的思想,即首先将数据划分成Part 1和Part 2两部分,Part 2通过dense block发送副本到下一个阶段,接着将两个分支的信息在通道方向进行Concat拼接,最后再通过Transition层进一步融合。CSPNet思想可以和ResNet、ResNeXt和DenseNet结合,目前主流的有CSPResNext50 和CSPDarknet53两种改造Backbone网络。
采用CSP结构有如下几点好处:
1.加强CNN学习能力
2.删除计算瓶颈
3.减少显存开销
SPP输入的特征层依次通过一个卷积核大小为5×5,9×9,13×13的最大池化下采样层,然后将这三个输出的特征层和原始的输入的特征层进行通道拼接。通过SPP结构能够在一定程度上解决多出尺度的问题;PAN来自于PANet(Path Aggregation Network),实际上就是在原来的FPN结构上又加上了一个从低层到高层的融合。在YOLOv4里面的特征融合采用的是concat通道拼接。
当然了还有训练策略、数据增强等其他方面的创新技术这里就不再展开了介绍了,感兴趣的话可以自行查询相关的资料即可。
这里是基于实验性的想法做的实践项目,简单看下数据集:
如果对如何使用yolov4项目来开发构建自己的目标检测系统有疑问的可以看我前面的超详细博文教程:
《基于官方YOLOv4开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》
《基于官方YOLOv4-u5【yolov5风格实现】开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》
本文的项目开发是以第一篇教程为实例进行的,当然了如果想要使用第二篇的教程本质上也都是一样的。
self.names如下
biaoshi
diangan
guangjiaoxiang
renjing
self.yaml如下:
# path
train: ./dataset/images/train/
val: ./dataset/images/test/
test: ./dataset/images/test/
# number of classes
nc: 4
# class names
names: ['biaoshi', 'diangan', 'guangjiaoxiang', 'renjing']
train.py参数设置如下所示:
if __name__ == '__main__':
time.sleep(1000)
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='weights/yolov4-tiny.weights', help='initial weights path')
parser.add_argument('--cfg', type=str, default='cfg/yolov4-tiny.cfg', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/self.yaml', help='data.yaml path')
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--batch-size', type=int, default=4, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
parser.add_argument('--project', default='runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
本文是基于yolov4-tiny.cfg进行模型的开发训练的,终端执行即可启动训练,日志输出如下所示:
训练完成如下所示:
等待训练玩出我们来看下结果详情。
【数据分布可视化】
【训练可视化】
【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
【Batch实例】
后续可以通过接入监控摄像头实时视频流数据来进行智能计算分析,对于实时检测到的目标对象进行综合处理后结合业务规则形成事件推送给相关的处理人员就可以实现对于城市部件的实时监测,对于可能出现的问题及时预警,感兴趣的话也都可以自行动手尝试下!