项目一:爬取天气预报数据
【内容】
在中国天气网(http://www.weather.com.cn)中输入城市的名称,例如输入信阳,进入http://www.weather.com.cn/weather1d/101180601.shtml#input
的网页显示信阳的天气预报,其中101180601是信阳的代码,每个城市或者地区都有一个代码。如下图所示,请爬取河南所有城市15天的天气预报数据。
1到7天代码
import requests
from bs4 import BeautifulSoup
import csv
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36',
'Accept-Encoding': 'gzip, deflate'
}
city_list = [101180101,101180901,101180801,101180301,101180501,101181101,101180201,101181201,101181501,101180701,101180601,101181401,101181001,101180401,101181701,101181601,101181301]
city_name_dict = {
101180101: "郑州市",
101180901: "洛阳市",
101180801: "开封市",
101180301: "新乡市",
101180501: "平顶山市",
101181101: "焦作市",
101180201: "安阳市",
101181201: "鹤壁市",
101181501: "漯河市",
101180701: "南阳市",
101180601: "信阳市",
101181401: "周口市",
101181001: "商丘市",
101180401: "许昌市",
101181701: "三门峡市",
101181601: "驻马店市",
101181301: "濮阳"
}
# 创建csv文件
with open('河南地级市7天天气情况.csv', 'w', newline='', encoding='utf-8') as csvfile:
csv_writer = csv.writer(csvfile)
# 写入表头
csv_writer.writerow(['City ID', 'City Name', 'Weather Info'])
for city in city_list:
city_id = city
city_name = city_name_dict.get(city_id, "未知城市")
print(f"City ID: {city_id}, City Name: {city_name}")
url = f'http://www.weather.com.cn/weather/{city}.shtml'
response = requests.get(headers=headers, url=url)
soup = BeautifulSoup(response.content.decode('utf-8'), 'html.parser')
# 找到v标签
v_div = soup.find('div', {'id': '7d'})
# 提取v
下的天气相关的网页信息
weather_info = v_div.find('ul', {'class': 't clearfix'})
# 提取li标签下的内容,每个标签下的分行打印,移除打印结果之间的空格
weather_list = []
for li in weather_info.find_all('li'):
weather_list.append(li.text.strip().replace('\n', ''))
# 将城市ID、城市名称和天气信息写入csv文件
csv_writer.writerow([city_id, city_name, ', '.join(weather_list)])
8到15天的代码
import requests
from bs4 import BeautifulSoup
import csv
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36',
'Accept-Encoding': 'gzip, deflate'
}
city_list = [101180101, 101180901, 101180801, 101180301, 101180501, 101181101, 101180201, 101181201, 101181501,
101180701, 101180601, 101181401, 101181001, 101180401, 101181701, 101181601, 101181301]
city_name_dict = {
101180101: "郑州市",
101180901: "洛阳市",
101180801: "开封市",
101180301: "新乡市",
101180501: "平顶山市",
101181101: "焦作市",
101180201: "安阳市",
101181201: "鹤壁市",
101181501: "漯河市",
101180701: "南阳市",
101180601: "信阳市",
101181401: "周口市",
101181001: "商丘市",
101180401: "许昌市",
101181701: "三门峡市",
101181601: "驻马店市",
101181301: "濮阳"
}
# 创建csv文件
with open('河南地级市8-15天天气情况.csv', 'w', newline='', encoding='utf-8') as csvfile:
csv_writer = csv.writer(csvfile)
# 写入表头
csv_writer.writerow(['City ID', 'City Name', 'Weather Info'])
for city in city_list:
city_id = city
city_name = city_name_dict.get(city_id, "未知城市")
print(f"City ID: {city_id}, City Name: {city_name}")
url = f'http://www.weather.com.cn/weather15d/{city}.shtml'
response = requests.get(headers=headers, url=url)
soup = BeautifulSoup(response.content.decode('utf-8'), 'html.parser')
# 找到v标签
v_div = soup.find('div', {'id': '15d'})
# 提取v
下的天气相关的网页信息
weather_info = v_div.find('ul', {'class': 't clearfix'})
# 提取li标签下的信息
for li in weather_info.find_all('li'):
time = li.find('span', {'class': 'time'}).text
wea = li.find('span', {'class': 'wea'}).text
tem = li.find('span', {'class': 'tem'}).text
wind = li.find('span', {'class': 'wind'}).text
wind1 = li.find('span', {'class': 'wind1'}).text
csv_writer.writerow([city_id, city_name, f"时间:{time},天气:{wea},温度:{tem},风向:{wind},风力:{wind1}"])
15天代码
import requests
from bs4 import BeautifulSoup
import csv
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36',
'Accept-Encoding': 'gzip, deflate'
}
city_list = [101180101, 101180901, 101180801, 101180301, 101180501, 101181101, 101180201, 101181201, 101181501,
101180701, 101180601, 101181401, 101181001, 101180401, 101181701, 101181601, 101181301]
city_name_dict = {
101180101: "郑州市",
101180901: "洛阳市",
101180801: "开封市",
101180301: "新乡市",
101180501: "平顶山市",
101181101: "焦作市",
101180201: "安阳市",
101181201: "鹤壁市",
101181501: "漯河市",
101180701: "南阳市",
101180601: "信阳市",
101181401: "周口市",
101181001: "商丘市",
101180401: "许昌市",
101181701: "三门峡市",
101181601: "驻马店市",
101181301: "濮阳"
}
# 创建csv文件
with open('河南地级市1-15天天气情况.csv', 'w', newline='', encoding='utf-8') as csvfile:
csv_writer = csv.writer(csvfile)
# 写入表头
csv_writer.writerow(['City ID', 'City Name', 'Weather Info'])
for city in city_list:
city_id = city
city_name = city_name_dict.get(city_id, "未知城市")
print(f"City ID: {city_id}, City Name: {city_name}")
# 爬取1-7天天气情况
url_7d = f'http://www.weather.com.cn/weather/{city}.shtml'
response_7d = requests.get(headers=headers, url=url_7d)
soup_7d = BeautifulSoup(response_7d.content.decode('utf-8'), 'html.parser')
v_div_7d = soup_7d.find('div', {'id': '7d'})
weather_info_7d = v_div_7d.find('ul', {'class': 't clearfix'})
weather_list_7d = []
for li in weather_info_7d.find_all('li'):
weather_list_7d.append(li.text.strip().replace('\n', ''))
# 爬取8-15天天气情况
url_15d = f'http://www.weather.com.cn/weather15d/{city}.shtml'
response_15d = requests.get(headers=headers, url=url_15d)
soup_15d = BeautifulSoup(response_15d.content.decode('utf-8'), 'html.parser')
v_div_15d = soup_15d.find('div', {'id': '15d'})
weather_info_15d = v_div_15d.find('ul', {'class': 't clearfix'})
weather_list_15d = []
for li in weather_info_15d.find_all('li'):
time = li.find('span', {'class': 'time'}).text
wea = li.find('span', {'class': 'wea'}).text
tem = li.find('span', {'class': 'tem'}).text
wind = li.find('span', {'class': 'wind'}).text
wind1 = li.find('span', {'class': 'wind1'}).text
weather_list_15d.append(f"时间:{time},天气:{wea},温度:{tem},风向:{wind},风力:{wind1}")
# 将城市ID、城市名称和天气信息写入csv文件
csv_writer.writerow([city_id, city_name, ', '.join(weather_list_7d+weather_list_15d)])
项目二:爬取红色旅游数据
【内容】
信阳是大别山革命根据地,红色旅游资源非常丰富,爬取http://www.bytravel.cn/view/red/index441_list.html 网页的红色旅游景点,并在地图上标注出来。
相关代码
import requests # 导入requests库,用于发送HTTP请求
import csv # 导入csv库,用于处理CSV文件
from bs4 import BeautifulSoup # 导入BeautifulSoup库,用于解析HTML文档
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0 Safari/537.36',
'Accept-Encoding': 'gzip, deflate' # 设置请求头,模拟浏览器访问
}
# 创建csv文件并写入表头
csv_file = open('信阳红色景点.csv', 'w', newline='', encoding='utf-8') # 打开csv文件,以写入模式
csv_writer = csv.writer(csv_file) # 创建csv写入对象
csv_writer.writerow(['景点名称', '景点简介', '星级', '图片链接']) # 写入表头
# 爬取第一页
url = 'http://www.bytravel.cn/view/red/index441_list.html' # 定义要爬取的网页URL
response = requests.get(headers=headers, url=url) # 发送GET请求,获取网页内容
soup = BeautifulSoup(response.content.decode('gbk'), 'html.parser') # 使用BeautifulSoup解析网页内容
target_div = soup.find('div', {'style': 'margin:5px 10px 0 10px'}) # 在解析后的HTML中查找目标div
for div in target_div.find_all('div', {'style': 'margin:2px 10px 0 7px;padding:3px 0 0 0'}): # 在目标div中查找所有符合条件的子div
title_element = div.find('a', {'class': 'blue14b'}) # 在子div中查找标题元素
if title_element: # 如果找到了标题元素
title = title_element.text # 获取标题文本
else:
title = "未找到标题" # 如果没有找到标题元素,设置默认值
Introduction_element = div.find('div', id='tctitletop102') # 在子div中查找简介元素
if Introduction_element: # 如果找到了简介元素
intro = Introduction_element.text.strip().replace("[详细]", "") # 获取简介文本,去除首尾空格和"[详细]"标记
else:
intro = "无简介" # 如果没有找到简介元素,设置默认值
star_element = div.find('font', {'class': 'f14'}) # 在子div中查找星级元素
if star_element: # 如果找到了星级元素
star = star_element.text # 获取星级文本
else:
star = "无星级" # 如果没有找到星级元素,设置默认值
img_url_element = div.find('img', {'class': 'hpic'}) # 在子div中查找图片链接元素
if img_url_element: # 如果找到了图片链接元素
img_url = img_url_element['src'] # 获取图片链接
else:
img_url = "无图片链接" # 如果没有找到图片链接元素,设置默认值
print('景点名称:', title) # 打印景点名称
print('景点简介:', intro) # 打印景点简介
print('星级:', star) # 打印星级
print('图片链接:', img_url) # 打印图片链接
# 将数据写入csv文件
csv_writer.writerow([title, intro, star, img_url]) # 将景点名称、简介、星级和图片链接写入csv文件
# 爬取第二页到第五页
for page in range(1, 5): # 遍历第二页到第五页
url = f'http://www.bytravel.cn/view/red/index441_list{page}.html' # 构造每一页的URL
response = requests.get(headers=headers, url=url) # 发送GET请求,获取网页内容
soup = BeautifulSoup(response.content.decode('gbk'), 'html.parser') # 使用BeautifulSoup解析网页内容
target_div = soup.find('div', {'style': 'margin:5px 10px 0 10px'}) # 在解析后的HTML中查找目标div
for div in target_div.find_all('div', {'style': 'margin:2px 10px 0 7px;padding:3px 0 0 0'}): # 在目标div中查找所有符合条件的子div
title_element = div.find('a', {'class': 'blue14b'}) # 在子div中查找标题元素
if title_element: # 如果找到了标题元素
title = title_element.text # 获取标题文本
else:
title = "未找到标题" # 如果没有找到标题元素,设置默认值
Introduction_element = div.find('div', id='tctitletop102') # 在子div中查找简介元素
if Introduction_element: # 如果找到了简介元素
intro = Introduction_element.text.strip().replace("[详细]", "") # 获取简介文本,去除首尾空格和"[详细]"标记
else:
intro = "无简介" # 如果没有找到简介元素,设置默认值
star_element = div.find('font', {'class': 'f14'}) # 在子div中查找星级元素
if star_element: # 如果找到了星级元素
star = star_element.text # 获取星级文本
else:
star = "无星级" # 如果没有找到星级元素,设置默认值
img_url_element = div.find('img', {'class': 'hpic'}) # 在子div中查找图片链接元素
if img_url_element: # 如果找到了图片链接元素
img_url = img_url_element['src'] # 获取图片链接
else:
img_url = "无图片链接" # 如果没有找到图片链接元素,设置默认值
print('景点名称:', title) # 打印景点名称
print('景点简介:', intro) # 打印景点简介
print('星级:', star) # 打印星级
print('图片链接:', img_url) # 打印图片链接
# 将数据写入csv文件
csv_writer.writerow([title, intro, star, img_url]) # 将景点名称、简介、星级和图片链接写入csv文件
# 关闭csv文件
csv_file.close()
项目三:豆瓣网爬取top250电影数据
【内容】
运用scrapy框架从豆瓣电影top250网站爬取全部上榜的电影信息,并将电影的名称、评分、排名、一句影评、剧情简介分别保存都mysql 和mongodb 库里面。
douban.py
import scrapy # 导入scrapy库
from scrapy import Selector, Request # 从scrapy库中导入Selector和Request类
from scrapy.http import HtmlResponse # 从scrapy库中导入HtmlResponse类
from ..items import DoubanspidersItem # 从当前目录下的items模块中导入DoubanspidersItem类
class DoubanSpider(scrapy.Spider): # 定义一个名为DoubanSpider的爬虫类,继承自scrapy.Spider
name = 'douban' # 设置爬虫的名称为'douban'
allowed_domains = ['movie.douban.com'] # 设置允许爬取的域名为'movie.douban.com'
# start_urls = ['http://movie.douban.com/top250'] # 设置起始URL,但注释掉了,所以不会自动开始爬取
def start_requests(self): # 定义start_requests方法,用于生成初始请求
for page in range(10): # 循环10次,每次生成一个请求,爬取豆瓣电影Top250的前10页数据
yield Request(url=f'https://movie.douban.com/top250?start={page * 25}&filt=') # 使用yield关键字返回请求对象,Scrapy会自动处理请求并调用回调函数
def parse(self, response: HtmlResponse, **kwargs): # 定义parse方法,用于解析响应数据
sel = Selector(response) # 使用Selector类解析响应数据
list_items = sel.css('#content > div > div.article > ol > li') # 使用CSS选择器提取电影列表项
for list_item in list_items: # 遍历电影列表项
detail_url = list_item.css('div.info > div.hd > a::attr(href)').extract_first() # 提取电影详情页的URL
movie_item = DoubanspidersItem() # 创建一个DoubanspidersItem实例
movie_item['name'] = list_item.css('span.title::text').extract_first() # 提取电影名称
movie_item['score'] = list_item.css('span.rating_num::text').extract_first() # 提取电影评分
movie_item['top'] = list_item.css('div.pic em ::text').extract_first() # 提取电影排名
yield Request( # 使用yield关键字返回请求对象,Scrapy会自动处理请求并调用回调函数
url=detail_url, callback=self.parse_movie_info, cb_kwargs={'item': movie_item})
def parse_movie_info(self, response, **kwargs): # 定义parse_movie_info方法,用于解析电影详情页数据
movie_item = kwargs['item'] # 获取传入的DoubanspidersItem实例
sel = Selector(response) # 使用Selector类解析响应数据
movie_item['comment'] = sel.css('div.comment p.comment-content span.short::text').extract_first() # 提取电影评论
movie_item['introduction'] = sel.css('span[property="v:summary"]::text').extract_first().strip() or '' # 提取电影简介
yield movie_item # 返回处理后的DoubanspidersItem实例,Scrapy会自动处理并保存结果
items.py
import scrapy
class DoubanspidersItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
# pass
top = scrapy.Field()
name = scrapy.Field()
score = scrapy.Field()
introduction = scrapy.Field()
comment = scrapy.Field()
pipelines.py
from itemadapter import ItemAdapter
import openpyxl
import pymysql
class DoubanspidersPipeline:
def __init__(self):
self.conn = pymysql.connect(
host='localhost',
port=3306,
user='root',
password='789456MLq',
db='sx_douban250',
charset='utf8mb4'
)
self.cursor = self.conn.cursor()
self.data = []
def close_spider(self,spider):
if len(self.data) > 0:
self._write_to_db()
self.conn.close()
def process_item(self, item, spider):
self.data.append(
(item['top'],item['name'],item['score'],item['introduction'],item['comment'])
)
if len(self.data) == 100:
self._writer_to_db()
self.data.clear()
return item
def _writer_to_db(self):
self.cursor.executemany(
'insert into doubantop250 (top,name,score,introduction,comment)'
'values (%s,%s,%s,%s,%s)',
self.data
)
self.conn.commit()
from pymongo import MongoClient
class MyMongoDBPipeline:
def __init__(self):
self.client = MongoClient('mongodb://localhost:27017/')
self.db = self.client['sx_douban250']
self.collection = self.db['doubantop250']
self.data = []
def close_spider(self, spider):
if len(self.data) > 0:
self._write_to_db()
self.client.close()
def process_item(self, item, spider):
self.data.append({
'top': item['top'],
'name': item['name'],
'score': item['score'],
'introduction': item['introduction'],
'comment': item['comment']
})
if len(self.data) == 100:
self._write_to_db()
self.data.clear()
return item
def _write_to_db(self):
self.collection.insert_many(self.data)
self.data.clear()
class ExcelPipeline:
def __init__(self):
self.wb = openpyxl.Workbook()
self.ws = self.wb.active
self.ws.title = 'Top250'
self.ws.append(('排名','评分','主题','简介','评论'))
def open_spider(self,spider):
pass
def close_spider(self,spider):
self.wb.save('豆瓣Top250.xlsx')
def process_item(self,item,spider):
self.ws.append(
(item['top'], item['name'], item['score'], item['introduction'], item['comment'])
)
return item
settings.py相关内容修改