Java 计算两点两线的交点、计算两圆的交点

一、需求

1. 已知B点、C点、c线长和b线长,求A点坐标;
1. 通过B、C两点作为圆心,绘制半径为c、b的圆;
2. 求出A1、A2的坐标;
3. 选取自己想要的那个点;

计算两点两线交点
圆心交点

2. 三维向量计算直线上的一点;

向量计算三维坐标的偏移

二、代码

  1. 计算图片中A点坐标
private NEZ calculateAPoint(NEZ nezG, NEZ nezD, float gkL1, float dkL2) {
    // 判断距离
    double dist = Geometry.getDistance(nezG.N, nezG.E, nezD.N, nezD.E);
    if ((dist > (gkL1 + dkL2)) || (dkL2 > (dist + gkL1)) || (gkL1 > (dist + dkL2))) { // 相等满足
        return null;
    }
    // 求出K点的坐标
    List resultXYList = calculatePointsOfTwoCircles(nezG, nezD, gkL1, dkL2);
    if (resultXYList.size() <= 0) {
        return null;
    }
    // 判断在直线右侧的点
    NEZ nezK;
    if (resultXYList.size() == 2) {
        nezK = new NEZ(resultXYList.get(1), resultXYList.get(0), 0);
    } else if (resultXYList.size() == 4) {
        NEZ nez1 = new NEZ(resultXYList.get(1), resultXYList.get(0), 0);
        NEZ nez2 = new NEZ(resultXYList.get(3), resultXYList.get(2), 0);
        if (!isLeft(nezG, nezD, nez1)) {
            nezK = nez1;
        } else {
            nezK = nez2;
        }
    } else {
        return null;
    }
    // 高程内插:按距离加权平均
    nezK.Z = (nezD.Z * gkL1 + nezD.Z * dkL2) / (gkL1 + dkL2);
    return nezK;
}

/**
 * 判断点是否在线的左侧
 * @param a 开始点
 * @param b 结束点
 * @param c 计算点
 * @return 是否在左侧
 * @WXS 2023-2-10
 */
private boolean isLeft(NEZ a, NEZ b, NEZ c) {
    return ((b.E - a.E) * (c.N - a.N) - (b.N - a.N) * (c.E - a.E)) > 0;
}

/**
 * 计算两个圆的交点坐标
 *
 * @param nezA 第一个点
 * @param nezB 第二个点
 * @param r1   第一个点圆半径
 * @param r2   第二个点圆半径
 * @return 点xy数组
 * @WXS 2023-2-10
 */
private List calculatePointsOfTwoCircles(NEZ nezA, NEZ nezB, float r1, float r2) {
    List resultList = new ArrayList<>();
    float x1 = (float) nezA.E;
    float y1 = (float) nezA.N;
    float x2 = (float) nezB.E;
    float y2 = (float) nezB.N;
    float dx = x2 - x1;
    float dy = y2 - y1;
    // 两个圆相离或包含
    double dis2 = Math.pow(dx, 2) + Math.pow(dy, 2);
    if (dis2 > Math.pow((r1 + r2), 2) || dis2 < Math.pow((r1 - r2), 2)) {
        return resultList;// 失败
    }
    // 计算两个圆心的连线与x轴的角度t
    double t = Math.atan2(dy, dx);
    // 计算两个圆心的连线与圆心与交点之间的夹角a
    double a = Math.acos((r1 * r1 - r2 * r2 + dis2) / (2 * r1 * Math.sqrt(dis2)));
    // 计算交点
    double x3 = x1 + r1 * Math.cos(t + a);
    double y3 = y1 + r1 * Math.sin(t + a);
    double x4 = x1 + r1 * Math.cos(t - a);
    double y4 = y1 + r1 * Math.sin(t - a);
    if (sgn(a) == 0) {
        resultList.add((float) x3);
        resultList.add((float) y3);
    } else {
        resultList.add((float) x3);
        resultList.add((float) y3);
        resultList.add((float) x4);
        resultList.add((float) y4);
    }
    return resultList;
}

private int sgn(double dk) {
    if (dk == 0) {
        return 0;
    } else if (dk > 0) {
        return 1;
    } else {
        return -1;
    }
}

/**
 * 四舍五入
 *
 * @param d
 * @param prec 保存小数位数
 * @WXS 2023-2-10
 */
private double roundPrec(double d, int prec) {
    return new BigDecimal(d).setScale(prec, BigDecimal.ROUND_HALF_UP).doubleValue();
}
  1. 三维向量计算直线上的一点;
// ->GK 直线的向量
Vector3 directionVector3 = new Vector3(nezK.E - nezG.E, nezK.N - nezG.N, nezK.Z - nezG.Z);
// 向量单位化
directionVector3.normalize();
// 向量乘移动长度
Vector3 changeVector3 = Vector3.opMultiply(directionVector3, mcs.getNewGK());
Vector3 centerV3 = new Vector3(E, Z, N);
Vector3 centerResultV3 = Vector3.opAddition(changeVector3, centerV3);

Vector3 的代码

package com.zhd.opengl.base;

import java.util.List;

public class Vector3 implements Cloneable {
    private double x;
    private double y;
    private double z;

    public Vector3() {
    }

    public Vector3(double value) {
        this.x = value;
        this.y = value;
        this.z = value;
    }

    public Vector3(double x, double y, double z) {
        this.x = x;
        this.y = y;
        this.z = z;
    }

    public Vector3(List array) {
        if (array.size() != 3) {
            throw new IllegalArgumentException("The dimension of the array must be three.");
        } else {
            this.x = (Double) array.get(0);
            this.y = (Double) array.get(1);
            this.z = (Double) array.get(2);
        }
    }

    public static Vector3 getZero() {
        return new Vector3(0.0D, 0.0D, 0.0D);
    }

    public static Vector3 getUnitX() {
        return new Vector3(1.0D, 0.0D, 0.0D);
    }

    public static Vector3 getUnitY() {
        return new Vector3(0.0D, 1.0D, 0.0D);
    }

    public static Vector3 getUnitZ() {
        return new Vector3(0.0D, 0.0D, 1.0D);
    }

    public static Vector3 getNaN() {
        return new Vector3(0.0D / 0.0, 0.0D / 0.0, 0.0D / 0.0);
    }

    public static boolean isNaN(Vector3 u) {
        return Double.isNaN(u.getX()) || Double.isNaN(u.getY()) || Double.isNaN(u.getZ());
    }

    public static double dotProduct(Vector3 u, Vector3 v) {
        return u.getX() * v.getX() + u.getY() * v.getY() + u.getZ() * v.getZ();
    }

    public static Vector3 crossProduct(Vector3 u, Vector3 v) {
        double a = u.getY() * v.getZ() - u.getZ() * v.getY();
        double b = u.getZ() * v.getX() - u.getX() * v.getZ();
        double c = u.getX() * v.getY() - u.getY() * v.getX();
        return new Vector3(a, b, c);
    }

    public static double distance(Vector3 u, Vector3 v) {
        return Math.sqrt((u.getX() - v.getX()) * (u.getX() - v.getX()) + (u.getY() - v.getY()) * (u.getY() - v.getY()) + (u.getZ() - v.getZ()) * (u.getZ() - v.getZ()));
    }

    public static double squareDistance(Vector3 u, Vector3 v) {
        return (u.getX() - v.getX()) * (u.getX() - v.getX()) + (u.getY() - v.getY()) * (u.getY() - v.getY()) + (u.getZ() - v.getZ()) * (u.getZ() - v.getZ());
    }

    public static double angleBetween(Vector3 u, Vector3 v) {
        double cos = dotProduct(u, v) / (u.modulus() * v.modulus());
        if (cos >= 1.0D) {
            return 0.0D;
        } else {
            return cos <= -1.0D ? Math.PI : Math.acos(cos);
        }
    }

    public static Vector3 midPoint(Vector3 u, Vector3 v) {
        return new Vector3((v.getX() + u.getX()) * 0.5D, (v.getY() + u.getY()) * 0.5D, (v.getZ() + u.getZ()) * 0.5D);
    }

    public static boolean arePerpendicular(Vector3 u, Vector3 v) {
        return arePerpendicular(u, v, 1.0E-12D);
    }

    public static boolean arePerpendicular(Vector3 u, Vector3 v, double threshold) {
        return MathHelper.isZero(dotProduct(u, v), threshold);
    }

    public static boolean areParallel(Vector3 u, Vector3 v) {
        return areParallel(u, v, 1.0E-12D);
    }

    public static boolean areParallel(Vector3 u, Vector3 v, double threshold) {
        double a = u.getY() * v.getZ() - u.getZ() * v.getY();
        double b = u.getZ() * v.getX() - u.getX() * v.getZ();
        double c = u.getX() * v.getY() - u.getY() * v.getX();
        if (!MathHelper.isZero(a, threshold)) {
            return false;
        } else if (!MathHelper.isZero(b, threshold)) {
            return false;
        } else {
            return MathHelper.isZero(c, threshold);
        }
    }

    public static Vector3 round(Vector3 u, int numDigits) {
        if (numDigits >= 0 && numDigits <= 15) {
            return new Vector3((double) Math.round(u.getX() * Math.pow(10.0D, (double) numDigits)) / Math.pow(10.0D, (double) numDigits), (double) Math.round(u.getY() * Math.pow(10.0D, (double) numDigits)) / Math.pow(10.0D, (double) numDigits), (double) Math.round(u.getZ() * Math.pow(10.0D, (double) numDigits)) / Math.pow(10.0D, (double) numDigits));
        } else {
            throw new IllegalArgumentException("numDigits must be 0 < numDigits < 15");
        }
    }

    public static Vector3 opAddition(Vector3 u, Vector3 v) {
        return new Vector3(u.getX() + v.getX(), u.getY() + v.getY(), u.getZ() + v.getZ());
    }

    public static Vector3 opSubtraction(Vector3 u, Vector3 v) {
        return new Vector3(u.getX() - v.getX(), u.getY() - v.getY(), u.getZ() - v.getZ());
    }

    public static Vector3 OpUnaryNegation(Vector3 u) {
        return new Vector3(-u.getX(), -u.getY(), -u.getZ());
    }

    public static Vector3 opMultiply(Vector3 u, double a) {
        return new Vector3(u.getX() * a, u.getY() * a, u.getZ() * a);
    }

    public static Vector3 opMultiply(double a, Vector3 u) {
        return new Vector3(u.getX() * a, u.getY() * a, u.getZ() * a);
    }

    public static Vector3 opDivision(Vector3 u, double a) {
        double invEscalar = 1.0D / a;
        return new Vector3(u.getX() * invEscalar, u.getY() * invEscalar, u.getZ() * invEscalar);
    }

    public static Vector3 opDivision(double a, Vector3 u) {
        return new Vector3(a / u.getX(), a / u.getY(), a / u.getZ());
    }

    public double getX() {
        return this.x;
    }

    public void setX(double aXValue) {
        this.x = aXValue;
    }

    public double getY() {
        return this.y;
    }

    public void setY(double aYValue) {
        this.y = aYValue;
    }

    public double getZ() {
        return this.z;
    }

    public void setZ(double aZValue) {
        this.z = aZValue;
    }

    public double getItem(int index) {
        switch (index) {
            case 0:
                return this.x;
            case 1:
                return this.y;
            case 2:
                return this.z;
            default:
                throw new IllegalArgumentException("index");
        }
    }

    public void setItem(int index, double value) {
        switch (index) {
            case 0:
                this.x = value;
                break;
            case 1:
                this.y = value;
                break;
            case 2:
                this.z = value;
                break;
            default:
                throw new IllegalArgumentException("index");
        }

    }

    public void normalize() {
        double mod = this.modulus();
        if (MathHelper.isZero(mod, 1.0E-12D)) {
            throw new ArithmeticException("Cannot normalize a zero vector.");
        } else {
            double modInv = 1.0D / mod;
            this.x *= modInv;
            this.y *= modInv;
            this.z *= modInv;
        }
    }

    public double modulus() {
        return Math.sqrt(dotProduct(this, this));
    }

    public double[] toArray() {
        double[] u = new double[]{this.x, this.y, this.z};
        return u;
    }

    public boolean equals(Vector3 obj, double threshold) {
        return MathHelper.isEqual(obj.getX(), this.x, threshold) && MathHelper.isEqual(obj.getY(), this.y, threshold) && MathHelper.isEqual(obj.getZ(), this.z, threshold);
    }

    public boolean equals(Object obj) {
        if (obj == null) {
            return false;
        } else if (this == obj) {
            return true;
        } else {
            return obj instanceof Vector3 ? this.equals((Vector3) obj, 1.0E-12D) : false;
        }
    }

    public int hashCode() {
        return Double.valueOf(this.getX()).hashCode() ^ Double.valueOf(this.getY()).hashCode() ^ Double.valueOf(this.getZ()).hashCode();
    }

    public String toString() {
        return String.format("%1$s  %2$s  %3$s", this.x, this.y, this.z);
    }

    public String toString(IFormatProvider provider) {
        return String.format("%1$s  %2$s  %3$s", String.valueOf(this.x), String.valueOf(this.y), String.valueOf(this.z));
    }

    public Object clone() {
        try {
            return super.clone();
        } catch (CloneNotSupportedException var2) {
            var2.printStackTrace();
            return null;
        }
    }
}

参考文章

  • https://zhuanlan.zhihu.com/p/539383874

你可能感兴趣的:(Java 计算两点两线的交点、计算两圆的交点)