python备忘录——pandas笔记

pandas_learning

import numpy as np
import pandas as pd

一、生成对象

# 用值列表生成 Series
s = pd.Series([1, 3, 5, np.nan, 6, 8])
print(s)
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64
# 用含日期时间索引与标签的 NumPy 数组生成
dates = pd.date_range('20130101', periods=6)
print(dates)
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')
# 用含日期时间索引与标签的 NumPy 数组生成 DataFrame
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
print(df)
                   A         B         C         D
2013-01-01 -0.490432  1.341003 -0.350064 -1.128517
2013-01-02  2.097826 -0.184385  0.701016  0.110131
2013-01-03  0.626084  1.155184 -0.340739  1.792840
2013-01-04  0.418219 -0.551569  0.878323 -0.454765
2013-01-05  0.342240 -1.456387  1.389543 -1.012628
2013-01-06 -1.037013 -1.308806 -0.414125  2.011082
df2 = pd.DataFrame({'A': 1.,
                    'B': pd.Timestamp('20130102'),
                    'C': pd.Series(1, index=list(range(4)), dtype='float32'),
                    'D': np.array([3] * 4, dtype='int32'),
                    'E': pd.Categorical(["test", "train", "test", "train"]),
                    'F': 'foo'})

print(df2)
print('\n')
df2
     A          B    C  D      E    F
0  1.0 2013-01-02  1.0  3   test  foo
1  1.0 2013-01-02  1.0  3  train  foo
2  1.0 2013-01-02  1.0  3   test  foo
3  1.0 2013-01-02  1.0  3  train  foo


A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
# DataFrame 的列有不同数据类型
df2.dtypes
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object

二、查看数据

# 查看数据表头
df.head()

# 查看数据尾部
df.tail(3)
A B C D
2013-01-04 0.418219 -0.551569 0.878323 -0.454765
2013-01-05 0.342240 -1.456387 1.389543 -1.012628
2013-01-06 -1.037013 -1.308806 -0.414125 2.011082
# 显示索引(行名)
df.index
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')
# 显示列名
df.columns
Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_numpy() 输出底层数据的 NumPy 对象。注意,DataFrame 的列由多种数据类型组成时,该操作耗费系统资源较大,这也是 Pandas 和 NumPy 的本质区别:NumPy 数组只有一种数据类型,DataFrame 每列的数据类型各不相同。调用 DataFrame.to_numpy() 时,Pandas 查找支持 DataFrame 里所有数据类型的 NumPy 数据类型。还有一种数据类型是 object,可以把 DataFrame 列里的值强制转换为 Python 对象。

df.to_numpy()
# DataFrame.to_numpy() 的输出不包含行索引和列标签。
array([[-0.49043231,  1.34100341, -0.35006351, -1.12851705],
       [ 2.09782571, -0.18438459,  0.70101634,  0.11013148],
       [ 0.62608362,  1.15518436, -0.34073901,  1.79283954],
       [ 0.41821905, -0.5515692 ,  0.8783226 , -0.45476542],
       [ 0.34224006, -1.4563874 ,  1.38954313, -1.01262842],
       [-1.03701303, -1.30880558, -0.41412501,  2.01108196]])
# 快速查看数据的统计摘要
df.describe()
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.326154 -0.167493 0.310659 0.219690
std 1.073550 1.194712 0.777791 1.377465
min -1.037013 -1.456387 -0.414125 -1.128517
25% -0.282264 -1.119496 -0.347732 -0.873163
50% 0.380230 -0.367977 0.180139 -0.172317
75% 0.574117 0.820292 0.833996 1.372163
max 2.097826 1.341003 1.389543 2.011082
# 转置数据
df.T
2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
A -0.490432 2.097826 0.626084 0.418219 0.342240 -1.037013
B 1.341003 -0.184385 1.155184 -0.551569 -1.456387 -1.308806
C -0.350064 0.701016 -0.340739 0.878323 1.389543 -0.414125
D -1.128517 0.110131 1.792840 -0.454765 -1.012628 2.011082
# 按轴排序
df.sort_index(axis=1,ascending=False)
df.sort_index(axis=1,ascending =True)
A B C D
2013-01-01 -0.490432 1.341003 -0.350064 -1.128517
2013-01-02 2.097826 -0.184385 0.701016 0.110131
2013-01-03 0.626084 1.155184 -0.340739 1.792840
2013-01-04 0.418219 -0.551569 0.878323 -0.454765
2013-01-05 0.342240 -1.456387 1.389543 -1.012628
2013-01-06 -1.037013 -1.308806 -0.414125 2.011082
# 按值排序:
df.sort_values(by='B')
A B C D
2013-01-05 0.342240 -1.456387 1.389543 -1.012628
2013-01-06 -1.037013 -1.308806 -0.414125 2.011082
2013-01-04 0.418219 -0.551569 0.878323 -0.454765
2013-01-02 2.097826 -0.184385 0.701016 0.110131
2013-01-03 0.626084 1.155184 -0.340739 1.792840
2013-01-01 -0.490432 1.341003 -0.350064 -1.128517

三、选择

选择、设置标准 Python / Numpy 的表达式已经非常直观,交互也很方便,但对于生产代码,我们还是推荐优化过的 Pandas 数据访问方法:.at、.iat、.loc 和 .iloc

(一)获取数据

# 选择列
# 选择单列,产生 Series,与 df.A 等效:
df['A']

df.A
2013-01-01   -0.490432
2013-01-02    2.097826
2013-01-03    0.626084
2013-01-04    0.418219
2013-01-05    0.342240
2013-01-06   -1.037013
Freq: D, Name: A, dtype: float64
# 选择行
print(df[0:3])

print('\n')

# 根据条件选择行
print(df['20130102':'20130104'])
                   A         B         C         D
2013-01-01 -0.490432  1.341003 -0.350064 -1.128517
2013-01-02  2.097826 -0.184385  0.701016  0.110131
2013-01-03  0.626084  1.155184 -0.340739  1.792840

                   A         B         C         D
2013-01-02  2.097826 -0.184385  0.701016  0.110131
2013-01-03  0.626084  1.155184 -0.340739  1.792840
2013-01-04  0.418219 -0.551569  0.878323 -0.454765

(二)按照标签选择

# 用标签提取一行数据
df.loc[dates[0]]  
A   -0.490432
B    1.341003
C   -0.350064
D   -1.128517
Name: 2013-01-01 00:00:00, dtype: float64
# 用标签选择多列数据:
df.loc[:, ['A', 'B']]
A B
2013-01-01 -0.490432 1.341003
2013-01-02 2.097826 -0.184385
2013-01-03 0.626084 1.155184
2013-01-04 0.418219 -0.551569
2013-01-05 0.342240 -1.456387
2013-01-06 -1.037013 -1.308806
# 用标签切片,包含行与列结束点:
df.loc['20130102':'20130104', ['A', 'B']]
A B
2013-01-02 2.097826 -0.184385
2013-01-03 0.626084 1.155184
2013-01-04 0.418219 -0.551569
# 返回对象降维:
df.loc['20130102', ['A', 'B']]
A    2.097826
B   -0.184385
Name: 2013-01-02 00:00:00, dtype: float64
# 提取标量值:
df.loc[dates[0], 'A']

df.loc['20130101', 'A']
-0.490432312502826

(三)按位置选择

# 用整数位置选择:
df.iloc[3]
A    0.418219
B   -0.551569
C    0.878323
D   -0.454765
Name: 2013-01-04 00:00:00, dtype: float64
# 类似 NumPy / Python,用整数切片:
df.iloc[3:5, 0:2]
A B
2013-01-04 0.418219 -0.551569
2013-01-05 0.342240 -1.456387
# 类似 NumPy / Python,用整数列表按位置切片:
df.iloc[[1, 2, 4], [0, 2]]
A C
2013-01-02 2.097826 0.701016
2013-01-03 0.626084 -0.340739
2013-01-05 0.342240 1.389543
# 显式整行切片:
df.iloc[1:3, :]
A B C D
2013-01-02 2.097826 -0.184385 0.701016 0.110131
2013-01-03 0.626084 1.155184 -0.340739 1.792840
# 显式整列切片:
df.iloc[:, 1:3]
B C
2013-01-01 1.341003 -0.350064
2013-01-02 -0.184385 0.701016
2013-01-03 1.155184 -0.340739
2013-01-04 -0.551569 0.878323
2013-01-05 -1.456387 1.389543
2013-01-06 -1.308806 -0.414125
# 显式提取值:
df.iloc[1, 1]
df.iat[1, 1]
-0.18438458703585694

(四)布尔索引

# 用单列的值选择数据:
df[df.B > 0]
A B C D
2013-01-01 -0.490432 1.341003 -0.350064 -1.128517
2013-01-03 0.626084 1.155184 -0.340739 1.792840
# 选择 DataFrame 里满足条件的值:
df[df > 0]
A B C D
2013-01-01 NaN 1.341003 NaN NaN
2013-01-02 2.097826 NaN 0.701016 0.110131
2013-01-03 0.626084 1.155184 NaN 1.792840
2013-01-04 0.418219 NaN 0.878323 NaN
2013-01-05 0.342240 NaN 1.389543 NaN
2013-01-06 NaN NaN NaN 2.011082
# 用 isin() 筛选:
df2 = df.copy()
df2['E'] = ['one', 'one', 'two', 'three', 'four', 'three']
df2['time'] = ['1st','2nd','3rd','4th','5th','6th']
print(df2)

df2[df2['E'].isin(['two', 'four'])]
                   A         B         C         D      E time
2013-01-01 -0.490432  1.341003 -0.350064 -1.128517    one  1st
2013-01-02  2.097826 -0.184385  0.701016  0.110131    one  2nd
2013-01-03  0.626084  1.155184 -0.340739  1.792840    two  3rd
2013-01-04  0.418219 -0.551569  0.878323 -0.454765  three  4th
2013-01-05  0.342240 -1.456387  1.389543 -1.012628   four  5th
2013-01-06 -1.037013 -1.308806 -0.414125  2.011082  three  6th
A B C D E time
2013-01-03 0.626084 1.155184 -0.340739 1.792840 two 3rd
2013-01-05 0.342240 -1.456387 1.389543 -1.012628 four 5th

(五)赋值

# 用索引自动对齐新增列的数据:
s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range('20130102', periods=6))
s1
2013-01-02    1
2013-01-03    2
2013-01-04    3
2013-01-05    4
2013-01-06    5
2013-01-07    6
Freq: D, dtype: int64
# 按标签赋值:
df.at[dates[0], 'A'] = 0
df
A B C D
2013-01-01 0.000000 1.341003 -0.350064 -1.128517
2013-01-02 2.097826 -0.184385 0.701016 0.110131
2013-01-03 0.626084 1.155184 -0.340739 1.792840
2013-01-04 0.418219 -0.551569 0.878323 -0.454765
2013-01-05 0.342240 -1.456387 1.389543 -1.012628
2013-01-06 -1.037013 -1.308806 -0.414125 2.011082
# 按位置赋值:
df.iat[0, 1] = 0
df
A B C D
2013-01-01 0.000000 0.000000 -0.350064 -1.128517
2013-01-02 2.097826 -0.184385 0.701016 0.110131
2013-01-03 0.626084 1.155184 -0.340739 1.792840
2013-01-04 0.418219 -0.551569 0.878323 -0.454765
2013-01-05 0.342240 -1.456387 1.389543 -1.012628
2013-01-06 -1.037013 -1.308806 -0.414125 2.011082
# 按 NumPy 数组赋值:
df.loc[:, 'D'] = np.array([5] * len(df))
df
C:\Users\Allen\AppData\Local\Temp\ipykernel_13872\531792459.py:2: DeprecationWarning: In a future version, `df.iloc[:, i] = newvals` will attempt to set the values inplace instead of always setting a new array. To retain the old behavior, use either `df[df.columns[i]] = newvals` or, if columns are non-unique, `df.isetitem(i, newvals)`
  df.loc[:, 'D'] = np.array([5] * len(df))
A B C D
2013-01-01 0.000000 0.000000 -0.350064 5
2013-01-02 2.097826 -0.184385 0.701016 5
2013-01-03 0.626084 1.155184 -0.340739 5
2013-01-04 0.418219 -0.551569 0.878323 5
2013-01-05 0.342240 -1.456387 1.389543 5
2013-01-06 -1.037013 -1.308806 -0.414125 5
# 用 where 条件赋值:
df2 = df.copy()
print(df2)

df2[df2 > 0] = -df2
df2
                   A         B         C  D
2013-01-01  0.000000  0.000000 -0.350064  5
2013-01-02  2.097826 -0.184385  0.701016  5
2013-01-03  0.626084  1.155184 -0.340739  5
2013-01-04  0.418219 -0.551569  0.878323  5
2013-01-05  0.342240 -1.456387  1.389543  5
2013-01-06 -1.037013 -1.308806 -0.414125  5
A B C D
2013-01-01 0.000000 0.000000 -0.350064 -5
2013-01-02 -2.097826 -0.184385 -0.701016 -5
2013-01-03 -0.626084 -1.155184 -0.340739 -5
2013-01-04 -0.418219 -0.551569 -0.878323 -5
2013-01-05 -0.342240 -1.456387 -1.389543 -5
2013-01-06 -1.037013 -1.308806 -0.414125 -5

四、缺失值

Pandas 主要用 np.nan 表示缺失数据。 计算时,默认不包含空值。详见缺失数据。

# 重建索引(reindex)可以更改、添加、删除指定轴的索引,并返回数据副本,即不更改原数据。
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
df1.loc[dates[0]:dates[1], 'E'] = 1
df1
A B C D E
2013-01-01 0.000000 0.000000 -0.350064 5 1.0
2013-01-02 2.097826 -0.184385 0.701016 5 1.0
2013-01-03 0.626084 1.155184 -0.340739 5 NaN
2013-01-04 0.418219 -0.551569 0.878323 5 NaN
# 删除所有含缺失值的行:
df1.dropna(how='any')
A B C D E
2013-01-01 0.000000 0.000000 -0.350064 5 1.0
2013-01-02 2.097826 -0.184385 0.701016 5 1.0
# 填充缺失值
df1.fillna(value=5)
A B C D E
2013-01-01 0.000000 0.000000 -0.350064 5 1.0
2013-01-02 2.097826 -0.184385 0.701016 5 1.0
2013-01-03 0.626084 1.155184 -0.340739 5 5.0
2013-01-04 0.418219 -0.551569 0.878323 5 5.0
# 提取 nan 值的布尔掩码:
pd.isna(df1)
A B C D E
2013-01-01 False False False False False
2013-01-02 False False False False False
2013-01-03 False False False False True
2013-01-04 False False False False True

五、运算

(一)统计

# 描述性统计:
df.mean()
A    0.407893
B   -0.390994
C    0.310659
D    5.000000
dtype: float64
# 在另一个轴(即,行)上执行同样的操作:
print(df)
df.mean(1)
                   A         B         C  D
2013-01-01  0.000000  0.000000 -0.350064  5
2013-01-02  2.097826 -0.184385  0.701016  5
2013-01-03  0.626084  1.155184 -0.340739  5
2013-01-04  0.418219 -0.551569  0.878323  5
2013-01-05  0.342240 -1.456387  1.389543  5
2013-01-06 -1.037013 -1.308806 -0.414125  5





2013-01-01    1.162484
2013-01-02    1.903614
2013-01-03    1.610132
2013-01-04    1.436243
2013-01-05    1.318849
2013-01-06    0.560014
Freq: D, dtype: float64
# 不同维度对象运算时,要先对齐。 此外,Pandas 自动沿指定维度广播。
s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)
s
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

(二)Apply函数

# Apply 函数处理数据:
df.apply(np.cumsum)
A B C D
2013-01-01 0.000000 0.000000 -0.350064 5
2013-01-02 2.097826 -0.184385 0.350953 10
2013-01-03 2.723909 0.970800 0.010214 15
2013-01-04 3.142128 0.419231 0.888536 20
2013-01-05 3.484368 -1.037157 2.278080 25
2013-01-06 2.447355 -2.345962 1.863955 30

(三)直方图

s = pd.Series(np.random.randint(0, 7, size=10))
s
0    1
1    3
2    4
3    5
4    4
5    2
6    1
7    2
8    0
9    0
dtype: int32
s.value_counts()
1    2
4    2
2    2
0    2
3    1
5    1
dtype: int64

(四)字符串方法

s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
s.str.lower()
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

五、合并

(一)结合(concat)

Pandas 提供了多种将 Series、DataFrame 对象组合在一起的功能,用索引与关联代数功能的多种设置逻辑可执行连接(join)与合并(merge)操作。

df = pd.DataFrame(np.random.randn(10, 4))
df
0 1 2 3
0 -1.920086 0.367632 2.497282 0.066091
1 -0.604439 1.692157 -0.805864 1.755445
2 -0.585767 0.946251 0.196929 1.496892
3 -0.200327 -0.574453 -0.255195 -0.317823
4 1.273022 0.874491 1.619386 1.956572
5 -1.045788 2.007894 0.113608 -0.576531
6 0.947761 1.959843 1.525449 -0.859118
7 0.753344 0.290895 -1.511461 1.335855
8 -2.731952 0.122681 -1.543743 -1.982785
9 0.095608 -2.362279 -0.386469 1.895013
# 分解为多个组
pieces = [df[:3], df[3:7], df[7:]]
pieces
[          0         1         2         3
 0 -1.920086  0.367632  2.497282  0.066091
 1 -0.604439  1.692157 -0.805864  1.755445
 2 -0.585767  0.946251  0.196929  1.496892,
           0         1         2         3
 3 -0.200327 -0.574453 -0.255195 -0.317823
 4  1.273022  0.874491  1.619386  1.956572
 5 -1.045788  2.007894  0.113608 -0.576531
 6  0.947761  1.959843  1.525449 -0.859118,
           0         1         2         3
 7  0.753344  0.290895 -1.511461  1.335855
 8 -2.731952  0.122681 -1.543743 -1.982785
 9  0.095608 -2.362279 -0.386469  1.895013]
pd.concat(pieces)
0 1 2 3
0 -1.920086 0.367632 2.497282 0.066091
1 -0.604439 1.692157 -0.805864 1.755445
2 -0.585767 0.946251 0.196929 1.496892
3 -0.200327 -0.574453 -0.255195 -0.317823
4 1.273022 0.874491 1.619386 1.956572
5 -1.045788 2.007894 0.113608 -0.576531
6 0.947761 1.959843 1.525449 -0.859118
7 0.753344 0.290895 -1.511461 1.335855
8 -2.731952 0.122681 -1.543743 -1.982785
9 0.095608 -2.362279 -0.386469 1.895013

(二)连接(join)

1.第一个例子
left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
left
key lval
0 foo 1
1 foo 2
right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
right
key rval
0 foo 4
1 foo 5
pd.merge(left, right, on='key')
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
2.第二个例子
left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})
left
key lval
0 foo 1
1 bar 2
right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})
right
key rval
0 foo 4
1 bar 5
pd.merge(left, right, on='key')
key lval rval
0 foo 1 4
1 bar 2 5

(三)结合(append)

df = pd.DataFrame(np.random.randn(8, 4), columns=['A', 'B', 'C', 'D'])
df
A B C D
0 1.977216 0.809690 -1.092985 1.094562
1 -0.537330 0.119068 -0.270291 0.583295
2 -0.899852 -0.013189 -0.701051 -0.075777
3 -0.676315 -0.388863 -0.317767 0.200017
4 2.046481 -0.059868 -0.043779 0.073719
5 0.553642 0.585511 -0.363557 1.353199
6 -0.038520 0.867621 1.283126 0.359301
7 1.487298 -1.967855 0.781338 -0.356828
s = df.iloc[3]
s
A   -0.676315
B   -0.388863
C   -0.317767
D    0.200017
Name: 3, dtype: float64
df.append(s, ignore_index=True)
C:\Users\Allen\AppData\Local\Temp\ipykernel_13872\4011806271.py:1: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
  df.append(s, ignore_index=True)
A B C D
0 1.977216 0.809690 -1.092985 1.094562
1 -0.537330 0.119068 -0.270291 0.583295
2 -0.899852 -0.013189 -0.701051 -0.075777
3 -0.676315 -0.388863 -0.317767 0.200017
4 2.046481 -0.059868 -0.043779 0.073719
5 0.553642 0.585511 -0.363557 1.353199
6 -0.038520 0.867621 1.283126 0.359301
7 1.487298 -1.967855 0.781338 -0.356828
8 -0.676315 -0.388863 -0.317767 0.200017

六、分组(group)

df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
                   'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
                   'C': np.random.randn(8),
                   'D': np.random.randn(8)})
df
A B C D
0 foo one 0.110792 1.046919
1 bar one 0.257225 -1.405743
2 foo two -1.029414 -0.631213
3 bar three -0.696101 -0.153206
4 foo two 0.655852 0.016673
5 bar two 0.454345 -0.839135
6 foo one -1.270142 -2.196781
7 foo three 0.491435 0.502373
# 用 sum()函数计算每组的汇总数据:
df.groupby('A').sum()
C:\Users\Allen\AppData\Local\Temp\ipykernel_13872\408658545.py:2: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
  df.groupby('A').sum()
C D
A
bar 0.015469 -2.398085
foo -1.041477 -1.262029
# 用 sum()函数计算每组的汇总数据:
df.groupby(['A', 'B']).sum()
C D
A B
bar one 0.257225 -1.405743
three -0.696101 -0.153206
two 0.454345 -0.839135
foo one -1.159350 -1.149862
three 0.491435 0.502373
two -0.373561 -0.614540

七、重塑

(一)堆叠

tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
                     'foo', 'foo', 'qux', 'qux'],
                    ['one', 'two', 'one', 'two',
                     'one', 'two', 'one', 'two']]))
tuples
[('bar', 'one'),
 ('bar', 'two'),
 ('baz', 'one'),
 ('baz', 'two'),
 ('foo', 'one'),
 ('foo', 'two'),
 ('qux', 'one'),
 ('qux', 'two')]
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
df2 = df[:4]
df2
A B
first second
bar one 0.293173 0.076621
two 0.504254 0.005360
baz one -0.520367 -0.118466
two -0.280027 1.871664
stacked = df2.stack()
stacked
first  second   
bar    one     A    0.293173
               B    0.076621
       two     A    0.504254
               B    0.005360
baz    one     A   -0.520367
               B   -0.118466
       two     A   -0.280027
               B    1.871664
dtype: float64

压缩后的 DataFrame 或 Series 具有多层索引, stack() 的逆操作是 unstack(),默认为拆叠最后一层:

stacked.unstack()
A B
first second
bar one 0.293173 0.076621
two 0.504254 0.005360
baz one -0.520367 -0.118466
two -0.280027 1.871664
stacked.unstack(1)
second one two
first
bar A 0.293173 0.504254
B 0.076621 0.005360
baz A -0.520367 -0.280027
B -0.118466 1.871664

八、数据透视表

df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 3,
                   'B': ['A', 'B', 'C'] * 4,
                   'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
                   'D': np.random.randn(12),
                   'E': np.random.randn(12)})
df
A B C D E
0 one A foo 1.768843 -2.404768
1 one B foo -1.296745 1.205640
2 two C foo -0.374749 -0.545797
3 three A bar -0.504192 1.104782
4 one B bar -0.893779 -0.056505
5 one C bar -0.671526 -1.454542
6 two A foo 1.234484 1.087237
7 three B foo 0.316961 -1.333247
8 one C foo 1.342511 -0.712946
9 one A bar -0.263245 -0.278933
10 two B bar -2.146075 -0.725574
11 three C bar 1.257256 1.293410
# 生成数据透视表
pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
C bar foo
A B
one A -0.263245 1.768843
B -0.893779 -1.296745
C -0.671526 1.342511
three A -0.504192 NaN
B NaN 0.316961
C 1.257256 NaN
two A NaN 1.234484
B -2.146075 NaN
C NaN -0.374749

九、时间序列

Pandas 为频率转换时重采样提供了虽然简单易用,但强大高效的功能,如,将秒级的数据转换为 5 分钟为频率的数据。这种操作常见于财务应用程序,但又不仅限于此。详见时间序列

rng = pd.date_range('1/1/2012', periods=100, freq='S')
ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
ts.resample('5Min').sum()
2012-01-01    24914
Freq: 5T, dtype: int32
rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
ts = pd.Series(np.random.randn(len(rng)), rng)
ts
2012-03-06   -0.095941
2012-03-07    0.152061
2012-03-08    0.123898
2012-03-09   -0.291567
2012-03-10   -1.162841
Freq: D, dtype: float64
ts_utc = ts.tz_localize('UTC')
ts_utc
2012-03-06 00:00:00+00:00   -0.095941
2012-03-07 00:00:00+00:00    0.152061
2012-03-08 00:00:00+00:00    0.123898
2012-03-09 00:00:00+00:00   -0.291567
2012-03-10 00:00:00+00:00   -1.162841
Freq: D, dtype: float64
ts_utc.tz_convert('US/Eastern')
2012-03-05 19:00:00-05:00   -0.095941
2012-03-06 19:00:00-05:00    0.152061
2012-03-07 19:00:00-05:00    0.123898
2012-03-08 19:00:00-05:00   -0.291567
2012-03-09 19:00:00-05:00   -1.162841
Freq: D, dtype: float64
# 转换时间段:
rng = pd.date_range('1/1/2012', periods=5, freq='M')
ts = pd.Series(np.random.randn(len(rng)), index=rng)
ts
2012-01-31   -0.688979
2012-02-29   -0.748789
2012-03-31   -0.703756
2012-04-30   -0.933271
2012-05-31    0.548897
Freq: M, dtype: float64
ps = ts.to_period()
ps
2012-01   -0.688979
2012-02   -0.748789
2012-03   -0.703756
2012-04   -0.933271
2012-05    0.548897
Freq: M, dtype: float64
ps.to_timestamp()
2012-01-01   -0.688979
2012-02-01   -0.748789
2012-03-01   -0.703756
2012-04-01   -0.933271
2012-05-01    0.548897
Freq: MS, dtype: float64
# Pandas 函数可以很方便地转换时间段与时间戳。下例把以 11 月为结束年份的季度频率转换为下一季度月末上午 9 点:
prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
ts = pd.Series(np.random.randn(len(prng)), prng)
ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
ts.head()
1990-03-01 09:00   -0.343270
1990-06-01 09:00    0.108602
1990-09-01 09:00   -1.729255
1990-12-01 09:00    2.244965
1991-03-01 09:00    1.186678
Freq: H, dtype: float64

十、类别型

Pandas 的 DataFrame 里可以包含类别数据。完整文档详见类别简介 和 API 文档。

df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6],
                   "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']})
# 将 grade 的原生数据转换为类别型数据:
df["grade"] = df["raw_grade"].astype("category")
df["grade"]
0    a
1    b
2    b
3    a
4    a
5    e
Name: grade, dtype: category
Categories (3, object): ['a', 'b', 'e']
# 用有含义的名字重命名不同类型,调用 Series.cat.categories。
df["grade"].cat.categories = ["very good", "good", "very bad"]
C:\Users\Allen\AppData\Local\Temp\ipykernel_13872\861203465.py:2: FutureWarning: Setting categories in-place is deprecated and will raise in a future version. Use rename_categories instead.
  df["grade"].cat.categories = ["very good", "good", "very bad"]
# 重新排序各类别,并添加缺失类,Series.cat 的方法默认返回新 Series。
df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium",
                                              "good", "very good"])
df["grade"]
0    very good
1         good
2         good
3    very good
4    very good
5     very bad
Name: grade, dtype: category
Categories (5, object): ['very bad', 'bad', 'medium', 'good', 'very good']
# 注意,这里是按生成类别时的顺序排序,不是按词汇排序:
df.sort_values(by="grade")
id raw_grade grade
5 6 e very bad
1 2 b good
2 3 b good
0 1 a very good
3 4 a very good
4 5 a very good
# 按类列分组(groupby)时,即便某类别为空,也会显示:
df.groupby("grade").size()
grade
very bad     1
bad          0
medium       0
good         2
very good    3
dtype: int64

十一、可视化

ts = pd.Series(np.random.randn(1000),
               index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
ts.plot()


python备忘录——pandas笔记_第1张图片

# DataFrame 的 plot() 方法可以快速绘制所有带标签的列:
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
                  columns=['A', 'B', 'C', 'D'])

df = df.cumsum()
df.plot()

python备忘录——pandas笔记_第2张图片

十二、数据输入/输出

# 写入 CSV 文件
df.to_csv('foo.csv')
# 读取 CSV 文件数据:
pd.read_csv('foo.csv')
Unnamed: 0 A B C D
0 2000-01-01 -0.196217 -0.567679 -0.017399 -0.759675
1 2000-01-02 -0.992873 1.045825 0.751507 0.135319
2 2000-01-03 -1.139351 0.485977 1.263285 -0.954968
3 2000-01-04 -2.328024 0.945480 1.115053 -1.166374
4 2000-01-05 -4.682187 -1.138483 0.378853 -1.588296
... ... ... ... ... ...
995 2002-09-22 -22.127260 -56.337832 14.308220 -37.997555
996 2002-09-23 -22.683999 -56.727513 14.728768 -36.391624
997 2002-09-24 -24.029579 -55.935110 14.212392 -36.302242
998 2002-09-25 -25.639169 -54.762663 13.965459 -35.999471
999 2002-09-26 -26.532594 -54.212622 14.433300 -34.411454

1000 rows × 5 columns

# 写入 Excel 文件:
df.to_excel('foo.xlsx', sheet_name='Sheet1')
# 读取 Excel 文件:
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
Unnamed: 0 A B C D
0 2000-01-01 -0.196217 -0.567679 -0.017399 -0.759675
1 2000-01-02 -0.992873 1.045825 0.751507 0.135319
2 2000-01-03 -1.139351 0.485977 1.263285 -0.954968
3 2000-01-04 -2.328024 0.945480 1.115053 -1.166374
4 2000-01-05 -4.682187 -1.138483 0.378853 -1.588296
... ... ... ... ... ...
995 2002-09-22 -22.127260 -56.337832 14.308220 -37.997555
996 2002-09-23 -22.683999 -56.727513 14.728768 -36.391624
997 2002-09-24 -24.029579 -55.935110 14.212392 -36.302242
998 2002-09-25 -25.639169 -54.762663 13.965459 -35.999471
999 2002-09-26 -26.532594 -54.212622 14.433300 -34.411454

1000 rows × 5 columns

你可能感兴趣的:(python,python,pandas,机器学习)