YOLOv8融合改进 更换检测头为Detect_DyHead同时添加C2f-EMSC和C2f-EMSCP模块

YOLOv8融合改进 更换检测头为Detect_DyHead同时添加C2f-EMSC和C2f-EMSCP模块_第1张图片

一、Detect_DyHead检测头和C2f-EMSC,C2f-EMSCP模块

详细介绍和代码在往期的博客里:

Detect_DyHead:

(YOLOv8改进检测头Detect为Detect_Dyhead-CSDN博客)

C2f-EMSC和C2f-EMSCP:

(YOLOv8改进之多尺度转换模块C2f-EMSC和C2f-EMSCP-CSDN博客)

二、算法实现

1、将检测头和C2f的模块融合:

ultralytics\ultralytics\nn\other_modules文件夹中要是dyhead检测头要用到的kernel_warehouse.py(开头提到的博客中包含py文件的详细代码)

ultralytics\ultralytics\nn\other_modules\block.py中的代码为:

import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.nn.modules import Conv

from ..modules.block import *
from einops import rearrange




__all__ = ['DyHeadBlock','C2f_EMSC', 'C2f_EMSCP']

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


##########     添加DyHead        ###########
try:
    from mmcv.cnn import build_activation_layer, build_norm_layer
    from mmcv.ops.modulated_deform_conv import ModulatedDeformConv2d
    from mmengine.model import constant_init, normal_init
except ImportError:
    pass

def _make_divisible(v, divisor, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class swish(nn.Module):
    def forward(self, x):
        return x * torch.sigmoid(x)


class h_swish(nn.Module):
    def __init__(self, inplace=False):
        super(h_swish, self).__init__()
        self.inplace = inplace

    def forward(self, x):
        return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0


class h_sigmoid(nn.Module):
    def __init__(self, inplace=True, h_max=1):
        super(h_sigmoid, self).__init__()
        self.relu = nn.ReLU6(inplace=inplace)
        self.h_max = h_max

    def forward(self, x):
        return self.relu(x + 3) * self.h_max / 6


class DyReLU(nn.Module):
    def __init__(self, inp, reduction=4, lambda_a=1.0, K2=True, use_bias=True, use_spatial=False,
                 init_a=[1.0, 0.0], init_b=[0.0, 0.0]):
        super(DyReLU, self).__init__()
        self.oup = inp
        self.lambda_a = lambda_a * 2
        self.K2 = K2
        self.avg_pool = nn.AdaptiveAvgPool2d(1)

        self.use_bias = use_bias
        if K2:
            self.exp = 4 if use_bias else 2
        else:
            self.exp = 2 if use_bias else 1
        self.init_a = init_a
        self.init_b = init_b

        # determine squeeze
        if reduction == 4:
            squeeze = inp // reduction
        else:
            squeeze = _make_divisible(inp // reduction, 4)
        # print('reduction: {}, squeeze: {}/{}'.format(reduction, inp, squeeze))
        # print('init_a: {}, init_b: {}'.format(self.init_a, self.init_b))

        self.fc = nn.Sequential(
            nn.Linear(inp, squeeze),
            nn.ReLU(inplace=True),
            nn.Linear(squeeze, self.oup * self.exp),
            h_sigmoid()
        )
        if use_spatial:
            self.spa = nn.Sequential(
                nn.Conv2d(inp, 1, kernel_size=1),
                nn.BatchNorm2d(1),
            )
        else:
            self.spa = None

    def forward(self, x):
        if isinstance(x, list):
            x_in = x[0]
            x_out = x[1]
        else:
            x_in = x
            x_out = x
        b, c, h, w = x_in.size()
        y = self.avg_pool(x_in).view(b, c)
        y = self.fc(y).view(b, self.oup * self.exp, 1, 1)
        if self.exp == 4:
            a1, b1, a2, b2 = torch.split(y, self.oup, dim=1)
            a1 = (a1 - 0.5) * self.lambda_a + self.init_a[0]  # 1.0
            a2 = (a2 - 0.5) * self.lambda_a + self.init_a[1]

            b1 = b1 - 0.5 + self.init_b[0]
            b2 = b2 - 0.5 + self.init_b[1]
            out = torch.max(x_out * a1 + b1, x_out * a2 + b2)
        elif self.exp == 2:
            if self.use_bias:  # bias but not PL
                a1, b1 = torch.split(y, self.oup, dim=1)
                a1 = (a1 - 0.5) * self.lambda_a + self.init_a[0]  # 1.0
                b1 = b1 - 0.5 + self.init_b[0]
                out = x_out * a1 + b1

            else:
                a1, a2 = torch.split(y, self.oup, dim=1)
                a1 = (a1 - 0.5) * self.lambda_a + self.init_a[0]  # 1.0
                a2 = (a2 - 0.5) * self.lambda_a + self.init_a[1]
                out = torch.max(x_out * a1, x_out * a2)

        elif self.exp == 1:
            a1 = y
            a1 = (a1 - 0.5) * self.lambda_a + self.init_a[0]  # 1.0
            out = x_out * a1

        if self.spa:
            ys = self.spa(x_in).view(b, -1)
            ys = F.softmax(ys, dim=1).view(b, 1, h, w) * h * w
            ys = F.hardtanh(ys, 0, 3, inplace=True)/3
            out = out * ys

        return out

class DyDCNv2(nn.Module):
    """ModulatedDeformConv2d with normalization layer used in DyHead.
    This module cannot be configured with `conv_cfg=dict(type='DCNv2')`
    because DyHead calculates offset and mask from middle-level feature.
    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        stride (int | tuple[int], optional): Stride of the convolution.
            Default: 1.
        norm_cfg (dict, optional): Config dict for normalization layer.
            Default: dict(type='GN', num_groups=16, requires_grad=True).
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 stride=1,
                 norm_cfg=dict(type='GN', num_groups=16, requires_grad=True)):
        super().__init__()
        self.with_norm = norm_cfg is not None
        bias = not self.with_norm
        self.conv = ModulatedDeformConv2d(
            in_channels, out_channels, 3, stride=stride, padding=1, bias=bias)
        if self.with_norm:
            self.norm = build_norm_layer(norm_cfg, out_channels)[1]

    def forward(self, x, offset, mask):
        """Forward function."""
        x = self.conv(x.contiguous(), offset, mask)
        if self.with_norm:
            x = self.norm(x)
        return x
class DyHeadBlock(nn.Module):
    """DyHead Block with three types of attention.
    HSigmoid arguments in default act_cfg follow official code, not paper.
    https://github.com/microsoft/DynamicHead/blob/master/dyhead/dyrelu.py
    """

    def __init__(self,
                 in_channels,
                 norm_type='GN',
                 zero_init_offset=True,
                 act_cfg=dict(type='HSigmoid', bias=3.0, divisor=6.0)):
        super().__init__()
        self.zero_init_offset = zero_init_offset
        # (offset_x, offset_y, mask) * kernel_size_y * kernel_size_x
        self.offset_and_mask_dim = 3 * 3 * 3
        self.offset_dim = 2 * 3 * 3

        if norm_type == 'GN':
            norm_dict = dict(type='GN', num_groups=16, requires_grad=True)
        elif norm_type == 'BN':
            norm_dict = dict(type='BN', requires_grad=True)

        self.spatial_conv_high = DyDCNv2(in_channels, in_channels, norm_cfg=norm_dict)
        self.spatial_conv_mid = DyDCNv2(in_channels, in_channels)
        self.spatial_conv_low = DyDCNv2(in_channels, in_channels, stride=2)
        self.spatial_conv_offset = nn.Conv2d(
            in_channels, self.offset_and_mask_dim, 3, padding=1)
        self.scale_attn_module = nn.Sequential(
            nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, 1, 1),
            nn.ReLU(inplace=True), build_activation_layer(act_cfg))
        self.task_attn_module = DyReLU(in_channels)
        self._init_weights()

    def _init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                normal_init(m, 0, 0.01)
        if self.zero_init_offset:
            constant_init(self.spatial_conv_offset, 0)

    def forward(self, x):
        """Forward function."""
        outs = []
        for level in range(len(x)):
            # calculate offset and mask of DCNv2 from middle-level feature
            offset_and_mask = self.spatial_conv_offset(x[level])
            offset = offset_and_mask[:, :self.offset_dim, :, :]
            mask = offset_and_mask[:, self.offset_dim:, :, :].sigmoid()

            mid_feat = self.spatial_conv_mid(x[level], offset, mask)
            sum_feat = mid_feat * self.scale_attn_module(mid_feat)
            summed_levels = 1
            if level > 0:
                low_feat = self.spatial_conv_low(x[level - 1], offset, mask)
                sum_feat += low_feat * self.scale_attn_module(low_feat)
                summed_levels += 1
            if level < len(x) - 1:
                # this upsample order is weird, but faster than natural order
                # https://github.com/microsoft/DynamicHead/issues/25
                high_feat = F.interpolate(
                    self.spatial_conv_high(x[level + 1], offset, mask),
                    size=x[level].shape[-2:],
                    mode='bilinear',
                    align_corners=True)
                sum_feat += high_feat * self.scale_attn_module(high_feat)
                summed_levels += 1
            outs.append(self.task_attn_module(sum_feat / summed_levels))

        return outs



######         添加EMSConv和EMSConvP            ######

class EMSConv(nn.Module):
    # Efficient Multi-Scale Conv
    def __init__(self, channel=256, kernels=[3, 5]):
        super().__init__()
        self.groups = len(kernels)
        min_ch = channel // 4
        assert min_ch >= 16, f'channel must Greater than {64}, but {channel}'

        self.convs = nn.ModuleList([])
        for ks in kernels:
            self.convs.append(Conv(c1=min_ch, c2=min_ch, k=ks))
        self.conv_1x1 = Conv(channel, channel, k=1)

    def forward(self, x):
        _, c, _, _ = x.size()
        x_cheap, x_group = torch.split(x, [c // 2, c // 2], dim=1)
        x_group = rearrange(x_group, 'bs (g ch) h w -> bs ch h w g', g=self.groups)
        x_group = torch.stack([self.convs[i](x_group[..., i]) for i in range(len(self.convs))])
        x_group = rearrange(x_group, 'g bs ch h w -> bs (g ch) h w')
        x = torch.cat([x_cheap, x_group], dim=1)
        x = self.conv_1x1(x)

        return x

class EMSConvP(nn.Module):
    # Efficient Multi-Scale Conv Plus
    def __init__(self, channel=256, kernels=[1, 3, 5, 7]):
        super().__init__()
        self.groups = len(kernels)
        min_ch = channel // self.groups
        assert min_ch >= 16, f'channel must Greater than {16 * self.groups}, but {channel}'

        self.convs = nn.ModuleList([])
        for ks in kernels:
            self.convs.append(Conv(c1=min_ch, c2=min_ch, k=ks))
        self.conv_1x1 = Conv(channel, channel, k=1)

    def forward(self, x):
        x_group = rearrange(x, 'bs (g ch) h w -> bs ch h w g', g=self.groups)
        x_convs = torch.stack([self.convs[i](x_group[..., i]) for i in range(len(self.convs))])
        x_convs = rearrange(x_convs, 'g bs ch h w -> bs (g ch) h w')
        x_convs = self.conv_1x1(x_convs)

        return x_convs

class Bottleneck_EMSC(Bottleneck):
    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        super().__init__(c1, c2, shortcut, g, k, e)
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = EMSConv(c2)

class C2f_EMSC(C2f):
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(Bottleneck_EMSC(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))


class Bottleneck_EMSCP(Bottleneck):
    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        super().__init__(c1, c2, shortcut, g, k, e)
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = EMSConvP(c2)


class C2f_EMSCP(C2f):
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(Bottleneck_EMSCP(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))

检测头head.py文件中的代码为:

import math
import torch
import torch.nn as nn

from . import DyHeadBlock
from ..modules import Conv, DFL

from ultralytics.utils.tal import dist2bbox, make_anchors

__all__ = ['DetectAux','Detect_DyHead']


class DetectAux(nn.Module):
    """YOLOv8 Detect head with Aux Head for detection models."""
    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, ch=()):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch) // 2  # number of detection layers
        self.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.stride = torch.zeros(self.nl)  # strides computed during build
        c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], self.nc)  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl])
        self.cv3 = nn.ModuleList(
            nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
        self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()

        self.cv4 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[self.nl:])
        self.cv5 = nn.ModuleList(
            nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[self.nl:])
        self.dfl_aux = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()

    def forward(self, x):
        """Concatenates and returns predicted bounding boxes and class probabilities."""
        shape = x[0].shape  # BCHW
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
        if self.training:
            for i in range(self.nl, 2 * self.nl):
                x[i] = torch.cat((self.cv4[i - self.nl](x[i]), self.cv5[i - self.nl](x[i])), 1)
            return x
        elif self.dynamic or self.shape != shape:
            if hasattr(self, 'dfl_aux'):
                for i in range(self.nl, 2 * self.nl):
                    x[i] = torch.cat((self.cv4[i - self.nl](x[i]), self.cv5[i - self.nl](x[i])), 1)

            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x[:self.nl], self.stride, 0.5))
            self.shape = shape

        x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x[:self.nl]], 2)
        if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'):  # avoid TF FlexSplitV ops
            box = x_cat[:, :self.reg_max * 4]
            cls = x_cat[:, self.reg_max * 4:]
        else:
            box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
        dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        y = torch.cat((dbox, cls.sigmoid()), 1)
        return y if self.export else (y, x[:self.nl])

    def bias_init(self):
        """Initialize Detect() biases, WARNING: requires stride availability."""
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)

        for a, b, s in zip(m.cv4, m.cv5, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)

    def switch_to_deploy(self):
        del self.cv4, self.cv5, self.dfl_aux

class Detect_DyHead(nn.Module):
    """YOLOv8 Detect head with DyHead for detection models."""
    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, hidc=256, block_num=2, ch=()):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch)  # number of detection layers
        self.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.stride = torch.zeros(self.nl)  # strides computed during build
        c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], self.nc)  # channels
        self.conv = nn.ModuleList(nn.Sequential(Conv(x, hidc, 1)) for x in ch)
        self.dyhead = nn.Sequential(*[DyHeadBlock(hidc) for i in range(block_num)])
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(hidc, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for _ in ch)
        self.cv3 = nn.ModuleList(nn.Sequential(Conv(hidc, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for _ in ch)
        self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()

    def forward(self, x):
        """Concatenates and returns predicted bounding boxes and class probabilities."""
        for i in range(self.nl):
            x[i] = self.conv[i](x[i])
        x = self.dyhead(x)
        shape = x[0].shape  # BCHW
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
        if self.training:
            return x
        elif self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
            self.shape = shape

        x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
        if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'):  # avoid TF FlexSplitV ops
            box = x_cat[:, :self.reg_max * 4]
            cls = x_cat[:, self.reg_max * 4:]
        else:
            box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
        dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        y = torch.cat((dbox, cls.sigmoid()), 1)
        return y if self.export else (y, x)

    def bias_init(self):
        """Initialize Detect() biases, WARNING: requires stride availability."""
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)

2、修改ultralytics\ultralytics\nn\tasks.py文件

具体修改的步骤在一中提到的两篇博客里有十分详细的步骤和代码修改。

两篇博客中的修改的地方不同,应该按着步骤,把两篇博客中tasks.py文件中的每一个修改过的地方对照修改,最终tasks.py文件的代码如下:

# Ultralytics YOLO , AGPL-3.0 license

import contextlib
from copy import deepcopy
from pathlib import Path
from ultralytics.nn.other_modules import *
import torch
import torch.nn as nn
from ultralytics.nn.modules import (AIFI, C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x,
                                    Classify, Concat, Conv, Conv2, ConvTranspose, Detect, DWConv, DWConvTranspose2d,
                                    Focus, GhostBottleneck, GhostConv, HGBlock, HGStem, Pose, RepC3, RepConv,
                                    RTDETRDecoder,Segment)
from ultralytics.nn.other_modules.kernel_warehouse import Warehouse_Manager
from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load
from ultralytics.utils.checks import check_requirements, check_suffix, check_yaml
from ultralytics.utils.loss import v8ClassificationLoss, v8DetectionLoss, v8PoseLoss, v8SegmentationLoss
from ultralytics.utils.plotting import feature_visualization
from ultralytics.utils.torch_utils import (fuse_conv_and_bn, fuse_deconv_and_bn, initialize_weights, intersect_dicts,
                                           make_divisible, model_info, scale_img, time_sync)

try:
    import thop
except ImportError:
    thop = None


class BaseModel(nn.Module):
    """The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family."""

    def forward(self, x, *args, **kwargs):
        """
        Forward pass of the model on a single scale. Wrapper for `_forward_once` method.

        Args:
            x (torch.Tensor | dict): The input image tensor or a dict including image tensor and gt labels.

        Returns:
            (torch.Tensor): The output of the network.
        """
        if isinstance(x, dict):  # for cases of training and validating while training.
            return self.loss(x, *args, **kwargs)
        return self.predict(x, *args, **kwargs)

    def predict(self, x, profile=False, visualize=False, augment=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.
            augment (bool): Augment image during prediction, defaults to False.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        if augment:
            return self._predict_augment(x)
        return self._predict_once(x, profile, visualize)

    def _predict_once(self, x, profile=False, visualize=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                for _ in range(5 - len(x)):
                    x.insert(0, None)
                for i_idx, i in enumerate(x):
                    y.append(i if i_idx in self.save else None)
                x = x[-1]
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x
    def _predict_augment(self, x):
        """Perform augmentations on input image x and return augmented inference."""
        LOGGER.warning(f'WARNING ⚠️ {self.__class__.__name__} does not support augmented inference yet. '
                       f'Reverting to single-scale inference instead.')
        return self._predict_once(x)

    def _profile_one_layer(self, m, x, dt):
        """
        Profile the computation time and FLOPs of a single layer of the model on a given input. Appends the results to
        the provided list.

        Args:
            m (nn.Module): The layer to be profiled.
            x (torch.Tensor): The input data to the layer.
            dt (list): A list to store the computation time of the layer.

        Returns:
            None
        """
        c = m == self.model[-1] and isinstance(x, list)  # is final layer list, copy input as inplace fix
        flops = thop.profile(m, inputs=[x.copy() if c else x], verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")
        LOGGER.info(f'{dt[-1]:10.2f} {flops:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    def fuse(self, verbose=True):
        """
        Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the
        computation efficiency.

        Returns:
            (nn.Module): The fused model is returned.
        """
        if not self.is_fused():
            for m in self.model.modules():
                if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, 'bn'):
                    if isinstance(m, Conv2):
                        m.fuse_convs()
                    m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                    delattr(m, 'bn')  # remove batchnorm
                    m.forward = m.forward_fuse  # update forward
                if isinstance(m, ConvTranspose) and hasattr(m, 'bn'):
                    m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn)
                    delattr(m, 'bn')  # remove batchnorm
                    m.forward = m.forward_fuse  # update forward
                if isinstance(m, RepConv):
                    m.fuse_convs()
                    m.forward = m.forward_fuse  # update forward
            self.info(verbose=verbose)

        return self

    def is_fused(self, thresh=10):
        """
        Check if the model has less than a certain threshold of BatchNorm layers.

        Args:
            thresh (int, optional): The threshold number of BatchNorm layers. Default is 10.

        Returns:
            (bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise.
        """
        bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k)  # normalization layers, i.e. BatchNorm2d()
        return sum(isinstance(v, bn) for v in self.modules()) < thresh  # True if < 'thresh' BatchNorm layers in model

    def info(self, detailed=False, verbose=True, imgsz=640):
        """
        Prints model information.

        Args:
            detailed (bool): if True, prints out detailed information about the model. Defaults to False
            verbose (bool): if True, prints out the model information. Defaults to False
            imgsz (int): the size of the image that the model will be trained on. Defaults to 640
        """
        return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz)

    def _apply(self, fn):
        """
        Applies a function to all the tensors in the model that are not parameters or registered buffers.

        Args:
            fn (function): the function to apply to the model

        Returns:
            (BaseModel): An updated BaseModel object.
        """
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, (
        Detect, DetectAux,Detect_DyHead)):
            m.stride = fn(m.stride)
            m.anchors = fn(m.anchors)
            m.strides = fn(m.strides)
        return self
    def load(self, weights, verbose=True):
        """
        Load the weights into the model.

        Args:
            weights (dict | torch.nn.Module): The pre-trained weights to be loaded.
            verbose (bool, optional): Whether to log the transfer progress. Defaults to True.
        """
        model = weights['model'] if isinstance(weights, dict) else weights  # torchvision models are not dicts
        csd = model.float().state_dict()  # checkpoint state_dict as FP32
        csd = intersect_dicts(csd, self.state_dict())  # intersect
        self.load_state_dict(csd, strict=False)  # load
        if verbose:
            LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights')

    def loss(self, batch, preds=None):
        """
        Compute loss.

        Args:
            batch (dict): Batch to compute loss on
            preds (torch.Tensor | List[torch.Tensor]): Predictions.
        """
        if not hasattr(self, 'criterion'):
            self.criterion = self.init_criterion()

        preds = self.forward(batch['img']) if preds is None else preds
        return self.criterion(preds, batch)

    def init_criterion(self):
        """Initialize the loss criterion for the BaseModel."""
        raise NotImplementedError('compute_loss() needs to be implemented by task heads')


class DetectionModel(BaseModel):
    """YOLOv8 detection model."""

    def __init__(self, cfg='yolov8n.yaml', ch=3, nc=None, verbose=True):  # model, input channels, number of classes
        """Initialize the YOLOv8 detection model with the given config and parameters."""
        super().__init__()
        self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg)  # cfg dict

        # Warehouse_Manager
        warehouse_manager_flag = self.yaml.get('Warehouse_Manager', False)
        self.warehouse_manager = None
        if warehouse_manager_flag:
            self.warehouse_manager = Warehouse_Manager(cell_num_ratio=self.yaml.get('Warehouse_Manager_Ratio', 1.0))

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override YAML value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose,
                                            warehouse_manager=self.warehouse_manager)  # model, savelist
        self.names = {i: f'{i}' for i in range(self.yaml['nc'])}  # default names dict
        self.inplace = self.yaml.get('inplace', True)

        if warehouse_manager_flag:
            self.warehouse_manager.store()
            self.warehouse_manager.allocate(self)
            self.net_update_temperature(0)

        # Build strides
        m = self.model[-1]  # Detect()
        if isinstance(m, (
                Detect,  DetectAux, Segment,  Pose,Detect_DyHead)):
            s = 640  # 2x min stride
            m.inplace = self.inplace
            if isinstance(m, (DetectAux,)):
                forward = lambda x: self.forward(x)[:3]
            else:
                forward = lambda x: self.forward(x)[0] if isinstance(m, (
                    Segment,  Pose)) else self.forward(x)
            try:
                m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(2, ch, s, s))])  # forward
            except RuntimeError as e:
                if 'Not implemented on the CPU' in str(e):
                    self.model.to(torch.device('cuda'))
                    m.stride = torch.tensor([s / x.shape[-2] for x in
                                             forward(torch.zeros(2, ch, s, s).to(torch.device('cuda')))])  # forward
                else:
                    raise e
            self.stride = m.stride
            m.bias_init()  # only run once
        else:
            self.stride = torch.Tensor([32])  # default stride for i.e. RTDETR

        # Init weights, biases
        initialize_weights(self)
        if verbose:
            self.info()
            LOGGER.info('')

    def _predict_augment(self, x):
        """Perform augmentations on input image x and return augmented inference and train outputs."""
        img_size = x.shape[-2:]  # height, width
        s = [1, 0.83, 0.67]  # scales
        f = [None, 3, None]  # flips (2-ud, 3-lr)
        y = []  # outputs
        for si, fi in zip(s, f):
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = super().predict(xi)[0]  # forward
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, -1), None  # augmented inference, train

    @staticmethod
    def _descale_pred(p, flips, scale, img_size, dim=1):
        """De-scale predictions following augmented inference (inverse operation)."""
        p[:, :4] /= scale  # de-scale
        x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim)
        if flips == 2:
            y = img_size[0] - y  # de-flip ud
        elif flips == 3:
            x = img_size[1] - x  # de-flip lr
        return torch.cat((x, y, wh, cls), dim)

    def _clip_augmented(self, y):
        """Clip YOLO augmented inference tails."""
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4 ** x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[-1] // g) * sum(4 ** x for x in range(e))  # indices
        y[0] = y[0][..., :-i]  # large
        i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][..., i:]  # small
        return y

    def init_criterion(self):
        """Initialize the loss criterion for the DetectionModel."""
        return v8DetectionLoss(self)

    def net_update_temperature(self, temp):
        for m in self.modules():
            if hasattr(m, "update_temperature"):
                m.update_temperature(temp)


class SegmentationModel(DetectionModel):
    """YOLOv8 segmentation model."""

    def __init__(self, cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True):
        """Initialize YOLOv8 segmentation model with given config and parameters."""
        super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

    def init_criterion(self):
        """Initialize the loss criterion for the SegmentationModel."""
        return v8SegmentationLoss(self)


class PoseModel(DetectionModel):
    """YOLOv8 pose model."""

    def __init__(self, cfg='yolov8n-pose.yaml', ch=3, nc=None, data_kpt_shape=(None, None), verbose=True):
        """Initialize YOLOv8 Pose model."""
        if not isinstance(cfg, dict):
            cfg = yaml_model_load(cfg)  # load model YAML
        if any(data_kpt_shape) and list(data_kpt_shape) != list(cfg['kpt_shape']):
            LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}")
            cfg['kpt_shape'] = data_kpt_shape
        super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

    def init_criterion(self):
        """Initialize the loss criterion for the PoseModel."""
        return v8PoseLoss(self)


class ClassificationModel(BaseModel):
    """YOLOv8 classification model."""

    def __init__(self, cfg='yolov8n-cls.yaml', ch=3, nc=None, verbose=True):
        """Init ClassificationModel with YAML, channels, number of classes, verbose flag."""
        super().__init__()
        self._from_yaml(cfg, ch, nc, verbose)

    def _from_yaml(self, cfg, ch, nc, verbose):
        """Set YOLOv8 model configurations and define the model architecture."""
        self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg)  # cfg dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override YAML value
        elif not nc and not self.yaml.get('nc', None):
            raise ValueError('nc not specified. Must specify nc in model.yaml or function arguments.')
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose)  # model, savelist
        self.stride = torch.Tensor([1])  # no stride constraints
        self.names = {i: f'{i}' for i in range(self.yaml['nc'])}  # default names dict
        self.info()

    @staticmethod
    def reshape_outputs(model, nc):
        """Update a TorchVision classification model to class count 'n' if required."""
        name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1]  # last module
        if isinstance(m, Classify):  # YOLO Classify() head
            if m.linear.out_features != nc:
                m.linear = nn.Linear(m.linear.in_features, nc)
        elif isinstance(m, nn.Linear):  # ResNet, EfficientNet
            if m.out_features != nc:
                setattr(model, name, nn.Linear(m.in_features, nc))
        elif isinstance(m, nn.Sequential):
            types = [type(x) for x in m]
            if nn.Linear in types:
                i = types.index(nn.Linear)  # nn.Linear index
                if m[i].out_features != nc:
                    m[i] = nn.Linear(m[i].in_features, nc)
            elif nn.Conv2d in types:
                i = types.index(nn.Conv2d)  # nn.Conv2d index
                if m[i].out_channels != nc:
                    m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)

    def init_criterion(self):
        """Initialize the loss criterion for the ClassificationModel."""
        return v8ClassificationLoss()


class RTDETRDetectionModel(DetectionModel):
    """
    RTDETR (Real-time DEtection and Tracking using Transformers) Detection Model class.

    This class is responsible for constructing the RTDETR architecture, defining loss functions, and facilitating both
    the training and inference processes. RTDETR is an object detection and tracking model that extends from the
    DetectionModel base class.

    Attributes:
        cfg (str): The configuration file path or preset string. Default is 'rtdetr-l.yaml'.
        ch (int): Number of input channels. Default is 3 (RGB).
        nc (int, optional): Number of classes for object detection. Default is None.
        verbose (bool): Specifies if summary statistics are shown during initialization. Default is True.

    Methods:
        init_criterion: Initializes the criterion used for loss calculation.
        loss: Computes and returns the loss during training.
        predict: Performs a forward pass through the network and returns the output.
    """

    def __init__(self, cfg='rtdetr-l.yaml', ch=3, nc=None, verbose=True):
        """
        Initialize the RTDETRDetectionModel.

        Args:
            cfg (str): Configuration file name or path.
            ch (int): Number of input channels.
            nc (int, optional): Number of classes. Defaults to None.
            verbose (bool, optional): Print additional information during initialization. Defaults to True.
        """
        super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

    def init_criterion(self):
        """Initialize the loss criterion for the RTDETRDetectionModel."""
        from ultralytics.models.utils.loss import RTDETRDetectionLoss

        return RTDETRDetectionLoss(nc=self.nc, use_vfl=True)

    def loss(self, batch, preds=None):
        """
        Compute the loss for the given batch of data.

        Args:
            batch (dict): Dictionary containing image and label data.
            preds (torch.Tensor, optional): Precomputed model predictions. Defaults to None.

        Returns:
            (tuple): A tuple containing the total loss and main three losses in a tensor.
        """
        if not hasattr(self, 'criterion'):
            self.criterion = self.init_criterion()

        img = batch['img']
        # NOTE: preprocess gt_bbox and gt_labels to list.
        bs = len(img)
        batch_idx = batch['batch_idx']
        gt_groups = [(batch_idx == i).sum().item() for i in range(bs)]
        targets = {
            'cls': batch['cls'].to(img.device, dtype=torch.long).view(-1),
            'bboxes': batch['bboxes'].to(device=img.device),
            'batch_idx': batch_idx.to(img.device, dtype=torch.long).view(-1),
            'gt_groups': gt_groups}

        preds = self.predict(img, batch=targets) if preds is None else preds
        dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta = preds if self.training else preds[1]
        if dn_meta is None:
            dn_bboxes, dn_scores = None, None
        else:
            dn_bboxes, dec_bboxes = torch.split(dec_bboxes, dn_meta['dn_num_split'], dim=2)
            dn_scores, dec_scores = torch.split(dec_scores, dn_meta['dn_num_split'], dim=2)

        dec_bboxes = torch.cat([enc_bboxes.unsqueeze(0), dec_bboxes])  # (7, bs, 300, 4)
        dec_scores = torch.cat([enc_scores.unsqueeze(0), dec_scores])

        loss = self.criterion((dec_bboxes, dec_scores),
                              targets,
                              dn_bboxes=dn_bboxes,
                              dn_scores=dn_scores,
                              dn_meta=dn_meta)
        # NOTE: There are like 12 losses in RTDETR, backward with all losses but only show the main three losses.
        return sum(loss.values()), torch.as_tensor([loss[k].detach() for k in ['loss_giou', 'loss_class', 'loss_bbox']],
                                                   device=img.device)

    def predict(self, x, profile=False, visualize=False, batch=None, augment=False):
        """
        Perform a forward pass through the model.

        Args:
            x (torch.Tensor): The input tensor.
            profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
            visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
            batch (dict, optional): Ground truth data for evaluation. Defaults to None.
            augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.

        Returns:
            (torch.Tensor): Model's output tensor.
        """
        y, dt = [], []  # outputs
        for m in self.model[:-1]:  # except the head part
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        head = self.model[-1]
        x = head([y[j] for j in head.f], batch)  # head inference
        return x


class Ensemble(nn.ModuleList):
    """Ensemble of models."""

    def __init__(self):
        """Initialize an ensemble of models."""
        super().__init__()

    def forward(self, x, augment=False, profile=False, visualize=False):
        """Function generates the YOLO network's final layer."""
        y = [module(x, augment, profile, visualize)[0] for module in self]
        # y = torch.stack(y).max(0)[0]  # max ensemble
        # y = torch.stack(y).mean(0)  # mean ensemble
        y = torch.cat(y, 2)  # nms ensemble, y shape(B, HW, C)
        return y, None  # inference, train output


# Functions ------------------------------------------------------------------------------------------------------------


@contextlib.contextmanager
def temporary_modules(modules=None):
    """
    Context manager for temporarily adding or modifying modules in Python's module cache (`sys.modules`).

    This function can be used to change the module paths during runtime. It's useful when refactoring code,
    where you've moved a module from one location to another, but you still want to support the old import
    paths for backwards compatibility.

    Args:
        modules (dict, optional): A dictionary mapping old module paths to new module paths.

    Example:
        ```python
        with temporary_modules({'old.module.path': 'new.module.path'}):
            import old.module.path  # this will now import new.module.path
        ```

    Note:
        The changes are only in effect inside the context manager and are undone once the context manager exits.
        Be aware that directly manipulating `sys.modules` can lead to unpredictable results, especially in larger
        applications or libraries. Use this function with caution.
    """
    if not modules:
        modules = {}

    import importlib
    import sys
    try:
        # Set modules in sys.modules under their old name
        for old, new in modules.items():
            sys.modules[old] = importlib.import_module(new)

        yield
    finally:
        # Remove the temporary module paths
        for old in modules:
            if old in sys.modules:
                del sys.modules[old]


def torch_safe_load(weight):
    """
    This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised,
    it catches the error, logs a warning message, and attempts to install the missing module via the
    check_requirements() function. After installation, the function again attempts to load the model using torch.load().

    Args:
        weight (str): The file path of the PyTorch model.

    Returns:
        (dict): The loaded PyTorch model.
    """
    from ultralytics.utils.downloads import attempt_download_asset

    check_suffix(file=weight, suffix='.pt')
    file = attempt_download_asset(weight)  # search online if missing locally
    try:
        with temporary_modules({
                'ultralytics.yolo.utils': 'ultralytics.utils',
                'ultralytics.yolo.v8': 'ultralytics.models.yolo',
                'ultralytics.yolo.data': 'ultralytics.data'}):  # for legacy 8.0 Classify and Pose models
            return torch.load(file, map_location='cpu'), file  # load

    except ModuleNotFoundError as e:  # e.name is missing module name
        if e.name == 'models':
            raise TypeError(
                emojis(f'ERROR ❌️ {weight} appears to be an Ultralytics YOLOv5 model originally trained '
                       f'with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with '
                       f'YOLOv8 at https://github.com/ultralytics/ultralytics.'
                       f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
                       f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")) from e
        LOGGER.warning(f"WARNING ⚠️ {weight} appears to require '{e.name}', which is not in ultralytics requirements."
                       f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future."
                       f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
                       f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")
        check_requirements(e.name)  # install missing module

        return torch.load(file, map_location='cpu'), file  # load


def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
    """Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a."""

    ensemble = Ensemble()
    for w in weights if isinstance(weights, list) else [weights]:
        ckpt, w = torch_safe_load(w)  # load ckpt
        args = {**DEFAULT_CFG_DICT, **ckpt['train_args']} if 'train_args' in ckpt else None  # combined args
        model = (ckpt.get('ema') or ckpt['model']).to(device).float()  # FP32 model

        # Model compatibility updates
        model.args = args  # attach args to model
        model.pt_path = w  # attach *.pt file path to model
        model.task = guess_model_task(model)
        if not hasattr(model, 'stride'):
            model.stride = torch.tensor([32.])

        # Append
        ensemble.append(model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval())  # model in eval mode

    # Module updates
    for m in ensemble.modules():
        t = type(m)
        if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment,DetectAux,Detect_DyHead):
            m.inplace = inplace
        elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
            m.recompute_scale_factor = None  # torch 1.11.0 compatibility

    # Return model
    if len(ensemble) == 1:
        return ensemble[-1]

    # Return ensemble
    LOGGER.info(f'Ensemble created with {weights}\n')
    for k in 'names', 'nc', 'yaml':
        setattr(ensemble, k, getattr(ensemble[0], k))
    ensemble.stride = ensemble[torch.argmax(torch.tensor([m.stride.max() for m in ensemble])).int()].stride
    assert all(ensemble[0].nc == m.nc for m in ensemble), f'Models differ in class counts {[m.nc for m in ensemble]}'
    return ensemble


def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):
    """Loads a single model weights."""
    ckpt, weight = torch_safe_load(weight)  # load ckpt
    args = {**DEFAULT_CFG_DICT, **(ckpt.get('train_args', {}))}  # combine model and default args, preferring model args
    model = (ckpt.get('ema') or ckpt['model']).to(device).float()  # FP32 model

    # Model compatibility updates
    model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS}  # attach args to model
    model.pt_path = weight  # attach *.pt file path to model
    model.task = guess_model_task(model)
    if not hasattr(model, 'stride'):
        model.stride = torch.tensor([32.])

    model = model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval()  # model in eval mode

    # Module updates
    for m in model.modules():
        t = type(m)
        if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment,DetectAux,Detect_DyHead):
            m.inplace = inplace
        elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
            m.recompute_scale_factor = None  # torch 1.11.0 compatibility

    # Return model and ckpt
    return model, ckpt


def parse_model(d, ch, verbose=True, warehouse_manager=None):  # model_dict, input_channels(3)
    """Parse a YOLO model.yaml dictionary into a PyTorch model."""
    import ast

    # Args
    max_channels = float('inf')
    nc, act, scales = (d.get(x) for x in ('nc', 'activation', 'scales'))
    depth, width, kpt_shape = (d.get(x, 1.0) for x in ('depth_multiple', 'width_multiple', 'kpt_shape'))
    if scales:
        scale = d.get('scale')
        if not scale:
            scale = tuple(scales.keys())[0]
            LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
        depth, width, max_channels = scales[scale]

    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        if verbose:
            LOGGER.info(f"{colorstr('activation:')} {act}")  # print

    if verbose:
        LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<45}{'arguments':<30}")
    ch = [ch]
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    is_backbone = False
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        try:
            if m == 'node_mode':
                m = d[m]
                if len(args) > 0:
                    if args[0] == 'head_channel':
                        args[0] = int(d[args[0]])
            t = m
            m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m]  # get module
        except:
            pass
        for j, a in enumerate(args):
            if isinstance(a, str):
                with contextlib.suppress(ValueError):
                    try:
                        args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
                    except:
                        args[j] = a

        n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gain
        if m in (Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus,
                 BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3,
                 C2f_EMSC, C2f_EMSCP):
            if args[0] == 'head_channel':
                args[0] = d[args[0]]
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)

            args = [c1, c2, *args[1:]]


            if m in (
            BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x, RepC3, C2f_EMSC, C2f_EMSCP):
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is AIFI:
            args = [ch[f], *args]
        elif m in (HGStem, HGBlock):
            c1, cm, c2 = ch[f], args[0], args[1]
            args = [c1, cm, c2, *args[2:]]
            if m is HGBlock:
                args.insert(4, n)  # number of repeats
                n = 1
        elif m in (
        Detect, DetectAux, Pose,Detect_DyHead):
            args.append([ch[x] for x in f])

        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m in (Detect, Segment, Pose):
            args.append([ch[x] for x in f])
            if m is Segment:
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
        elif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1
            args.insert(1, [ch[x] for x in f])
        else:
            c2 = ch[f]

        if isinstance(c2, list):
            is_backbone = True
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type

        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t  # attach index, 'from' index, type
        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
        save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if
                    x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            for _ in range(5 - len(ch)):
                ch.insert(0, 0)
        else:
            ch.append(c2)
    return nn.Sequential(*layers), sorted(save)


def yaml_model_load(path):
    """Load a YOLOv8 model from a YAML file."""
    import re

    path = Path(path)
    if path.stem in (f'yolov{d}{x}6' for x in 'nsmlx' for d in (5, 8)):
        new_stem = re.sub(r'(\d+)([nslmx])6(.+)?$', r'\1\2-p6\3', path.stem)
        LOGGER.warning(f'WARNING ⚠️ Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.')
        path = path.with_name(new_stem + path.suffix)

    unified_path = re.sub(r'(\d+)([nslmx])(.+)?$', r'\1\3', str(path))  # i.e. yolov8x.yaml -> yolov8.yaml
    yaml_file = check_yaml(unified_path, hard=False) or check_yaml(path)
    d = yaml_load(yaml_file)  # model dict
    d['scale'] = guess_model_scale(path)
    d['yaml_file'] = str(path)
    return d


def guess_model_scale(model_path):
    """
    Takes a path to a YOLO model's YAML file as input and extracts the size character of the model's scale. The function
    uses regular expression matching to find the pattern of the model scale in the YAML file name, which is denoted by
    n, s, m, l, or x. The function returns the size character of the model scale as a string.

    Args:
        model_path (str | Path): The path to the YOLO model's YAML file.

    Returns:
        (str): The size character of the model's scale, which can be n, s, m, l, or x.
    """
    with contextlib.suppress(AttributeError):
        import re
        return re.search(r'yolov\d+([nslmx])', Path(model_path).stem).group(1)  # n, s, m, l, or x
    return ''


def guess_model_task(model):
    """
    Guess the task of a PyTorch model from its architecture or configuration.

    Args:
        model (nn.Module | dict): PyTorch model or model configuration in YAML format.

    Returns:
        (str): Task of the model ('detect', 'segment', 'classify', 'pose').

    Raises:
        SyntaxError: If the task of the model could not be determined.
    """

    def cfg2task(cfg):
        """Guess from YAML dictionary."""
        m = cfg['head'][-1][-2].lower()  # output module name
        if m in ('classify', 'classifier', 'cls', 'fc'):
            return 'classify'
        if 'detect' in m:
            return 'detect'
        if 'segment' in m:
            return 'segment'
        if 'pose' in m:
            return 'pose'

    # Guess from model cfg
    if isinstance(model, dict):
        with contextlib.suppress(Exception):
            return cfg2task(model)

    # Guess from PyTorch model
    if isinstance(model, nn.Module):  # PyTorch model
        for x in 'model.args', 'model.model.args', 'model.model.model.args':
            with contextlib.suppress(Exception):
                return eval(x)['task']
        for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml':
            with contextlib.suppress(Exception):
                return cfg2task(eval(x))

        for m in model.modules():
            if isinstance(m, (Detect, DetectAux,Detect_DyHead)):
                return 'detect'
            elif isinstance(m, (Segment)):
                return 'segment'
            elif isinstance(m, Classify):
                return 'classify'
            elif isinstance(m, Pose):
                return 'pose'

    # Guess from model filename
    if isinstance(model, (str, Path)):
        model = Path(model)
        if '-seg' in model.stem or 'segment' in model.parts:
            return 'segment'
        elif '-cls' in model.stem or 'classify' in model.parts:
            return 'classify'
        elif '-pose' in model.stem or 'pose' in model.parts:
            return 'pose'
        elif 'detect' in model.parts:
            return 'detect'

    # Unable to determine task from model
    LOGGER.warning("WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. "
                   "Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify', or 'pose'.")
    return 'detect'  # assume detect

3、创建yolov8+dyhead+c2fEMSC和yolov8+dyhead+c2fEMSCP的yaml文件 

两种改进方法的结合最重要一点的是最终训练的yaml文件:

yolov8+dyhead+c2fEMSC:

# Ultralytics YOLO , AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 2  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f_EMSC, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f_EMSC, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f_EMSC, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f_EMSC, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f_EMSC, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect_DyHead, [nc, 128, 1]]  # Detect(P3, P4, P5)

yolov8+dyhead+c2fEMSCP:

# Ultralytics YOLO , AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 2  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f_EMSCP, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f_EMSCP, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f_EMSCP, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f_EMSCP, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f_EMSCP, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect_DyHead, [nc, 128, 1]]  # Detect(P3, P4, P5)

三、运行测试

yolov8+dyhead+c2fEMSC:

YOLOv8融合改进 更换检测头为Detect_DyHead同时添加C2f-EMSC和C2f-EMSCP模块_第2张图片

yolov8+dyhead+c2fEMSCP:

YOLOv8融合改进 更换检测头为Detect_DyHead同时添加C2f-EMSC和C2f-EMSCP模块_第3张图片

可以看出最终模型中已经同时包含了Detect_DyHead检测头和C2f-EMSC或者C2f-EMSCP模块。

你可能感兴趣的:(upgradeYOLOv8,YOLO,python,深度学习)