【MATLAB】EEMD_LSTM神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

【MATLAB】EEMD_LSTM神经网络时序预测算法_第1张图片

1 基本定义

EEMD-LSTM神经网络时序预测算法是一种结合了扩展经验模态分解(EEMD)和长短期记忆神经网络(LSTM)的时间序列预测方法。

EEMD是一种改进的EMD方法,通过在原始信号中加入随机噪声,使信号在各个尺度上都能得到充分的分解,从而提高了IMF的完整性和准确性。通过使用EEMD,可以将原始时间序列分解为多个固有模式函数(IMF)和一个残差序列。

LSTM是一种深度学习中的流行方法,尤其在处理长时间序列相关问题上具有独特优势。LSTM的内部结构由遗忘门、输入门、输出门和存储单元组成,通过这些门控单元的相互作用,LSTM能够学习到时间序列中的长期依赖关系。

EEMD-LSTM算法的基本思路是将原始时间序列通过EEMD进行分解,然后将每个IMF作为LSTM的输入,利用LSTM模型对每个IMF进行预测。通过构建多个独立的LSTM模型,每个模型都有不同的初始化条件和参数设置。每个LSTM模型都会对时间序列进行训练和预测,最后将它们的预测结果进行综合,例如通过平均或加权平均的方式得到最终的预测结果。

EEMD-LSTM算法的优势在于通过建立多个模型,可以利用不同的初始化条件和参数组合,增加了模型的多样性,提高了整体的预测准确性。同时,EEMD能够更准确地提取时间序列中的复杂模式,有助于提高预测的准确性。

EEMD-LSTM算法在时间序列预测领域具有广泛的应用前景,尤其适用于处理非线性、非平稳信号。通过结合EEMD和LSTM的优势,该算法能够更好地捕捉时间序列中的复杂模式,提高预测的准确性和稳定性。在实际应用中,EEMD-LSTM算法可以应用于各种领域,如金融市场预测、气象预报、能源消耗预测等。

2 出图效果

附出图效果如下:

【MATLAB】EEMD_LSTM神经网络时序预测算法_第2张图片

【MATLAB】EEMD_LSTM神经网络时序预测算法_第3张图片

【MATLAB】EEMD_LSTM神经网络时序预测算法_第4张图片

【MATLAB】EEMD_LSTM神经网络时序预测算法_第5张图片

代码见附件~

你可能感兴趣的:(MATLAB,时序预测算法,神经网络,matlab,lstm)