YOLOv5改进:CVPR 2023 | SCConv: 即插即用的空间和通道重建卷积

1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。
2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。
2.涨点效果:添加 SCConv,经过测试,有效涨点。

目录

 1.步骤一

 2.步骤二

3.yaml文件


YOLOv5改进:CVPR 2023 | SCConv: 即插即用的空间和通道重建卷积_第1张图片

   卷积神经网络(cnn)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取冗余特征。最近的作品要么压缩训练有素的大型模型,要么探索设计良好的轻量级模型。在本文中,我们尝试利用特征之间的空间和通道冗余来进行CNN压缩,并提

你可能感兴趣的:(YOLO,机器学习,深度学习,人工智能)