- 计算机导论与计算机组成原理关系,计算机组成原理
一、课程简介课程中文名称:《计算机组成原理与汇编语言》课程英文名称:Computerprincipleandassemblylanguage课程编号:ZYB08003课程性质:专业必修课学时数:54学时(其中授课学时,课堂实验学时,讨论学时,自学学时)学分:3学分适用专业:计算机科学与技术课程的主要任务本课程的作用是通过课堂理论学习和实际操作训练,使学生掌握计算机硬件组成的基本原理、汇编语言程序设
- LLM归因的几种评估方式
liliangcsdn
深度学习人工智能语言模型算法
参考ASurveyofLargeLanguageModelsAttribution,LLM归因有以下几种有效的评估方式。1人工评估归因错误的检测难度大,所以评估主要依赖人工评价进行归因检测。人工评估虽然精度高,但成本高也耗时。标注过程中还需要标注员谨慎对待,而且需要手工验证。为提高可靠性,针对一个(问题,答案,归因文本),可能需要多个标注员同时进行标注,只有大部分人认为正确归因,该(问题,答案,归
- LLM归因的限制和挑战
LLM归因虽然能提升任务性能和模型的可解释性,但面临多个方面的限制。参考ASurveyofLargeLanguageModelsAttribution,LLM归因的限制和挑战总结如下1)难以确定何时以及如何进行归因LLM区分一般知识(可能不需要引文)和专业知识(需要归因)是一项微妙的任务,难以达成一致。2)归因的准确性无法得到保证LLM可能会将生成的答案和不相关或错误的来源关联起来,这种错误归因可
- C#基础内容记录
你小子在看什么……
.NETc#开发语言学习
目录一、名词解释1.1关键字1.2命名空间namespace1.3引用using1.4枚举Enum1.5访问修饰符1.6接口类1.7多态1.8LINQ1.9反射1.10Type类1.11sealed关键字1.12对象,类,构造方法1.13构造方法1.14创建一个对象1.15托管堆1.16公共语言运行库CLR(CommnonLanguageRuntime)1.17.net的对象生命周期1.18栈内存
- py每日spider案例之某website之古籍搜索
我不是程序员~~~~
爬虫项目实战py
importrequestsheaders={"accept":"application/json,text/plain,*/*","accept-language":"zh-CN,zh;q=0.9","cache-control":"no-cache","cont
- 微软:LLM训练数据组织框架DELT
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:DataEfficacyforLanguageModelTraining来源:arXiv,2506.21545摘要数据是语言模型(LM)训练的基础。最近的研究一直致力于数据效率,其目的是通过选择训练数据的最小或最优子集来最大限度地提高性能。数据过滤、采样和选择等技术在这一领域起着至关重要的作用。为了补充这一点,我们定义了数据效能,它侧重于通过优化训练数据的组织来最大限度地提高性能,目前尚未得
- 文本lint工具:textlint全面指南
包椒浩Leith
文本lint工具:textlint全面指南textlintThepluggablenaturallanguagelinterfortextandmarkdown.项目地址:https://gitcode.com/gh_mirrors/te/textlint项目介绍textlint是一款可插拔的文本和Markdown语法检查工具,专为JavaScript编写,旨在解决自然语言文本校对的难题。与专注于
- 【大模型学习 | BLIP2原理】
九年义务漏网鲨鱼
人工智能深度学习语言模型多模态大模型
BLIP-2:BootstrappingLanguage-ImagePre-trainingwithFrozenImageEncodersandLargeLanguageModels目前(2023)的图文模型都是基于端到端训练方式,大规模的模型和数据集导致了在预训练过程需要的大量计算。作者提出一种从离线、梯度冻结的图像、语言模型中提升图文的预训练模型。为了联系两个不同模态预训练模型,作者提出一种使
- 【大模型学习 | BLIP原理】
九年义务漏网鲨鱼
pytorch人工智能深度学习大模型多模态
BLIP:BootstrappingLanguage-ImagePre-trainingforUnifiedVision-LanguageUnderstandingandGeneration作者指出,现有的视觉-语言预训练(Vision-LanguagePre-training,VLP)模型在语言理解与生成任务上难以同时取得优异表现:一方面,基于编码器(encoder-based)的模型在生成任务
- SOTA是什么意思?
有奇妙能力吗
AI知识分享自然语言处理人工智能ai
最近看到一篇关于Transformer模型的论文,谷歌推出的BERT模型在11项NLP(naturallanguageprocessing)任务中夺得SOTA结果,引爆了整个NLP界。而Transformer是BERT取得成功的一个关键因素。谷歌的Transformer模型最早用于机器翻译任务,当时达到了SOTA效果。那么文中的SOTA效果,SOTA结果是什么意思呢?这里就来简单介绍一下定义:SO
- Python通过字符串调用函数_python 面向对象 根据字符串调动对应函数(1)
m0_61418142
python数据库linux
textprocess(file,language)但是textprocess(file=‘data.txt’,language=‘english’)language(text)TypeError:‘str’objectisnotcallable百度谷歌一番,我查到以下几种方式####1-字典最简单,易上手的方式,使用字典配对。defchinese(text):print(‘jieba分词’)de
- webstorm中element-ui标签无法跳转源码
Hong.1948
webstormuiide
原本用的webstorm2019,之前的项目开发时切实体验过跳转element-ui源码,觉得很香。更新了webstorm至2024,居然不行了,能弹出来提示,但就是找不到定义。不知道是不是2024版本的问题,node_moudles不管我是否手动添加exclude,它显示的都是exclude如下图:下列方式都尝试过了,没用:node_moudules设置为notexcludeLanguage&F
- 【LangChain编程:从入门到实践】AI 大模型检索增强生成 RAG 实践
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LangChain编程:从入门到实践-AI大模型检索增强生成RAG实践关键词:LangChain,RAG,大语言模型,检索增强生成,向量数据库,嵌入模型,提示工程1.背景介绍在人工智能和自然语言处理领域,大语言模型(LargeLanguageModels,LLMs)的出现无疑是一个重大突破。像GPT-3、GPT-4这样的模型展现出了惊人的语言理解和生成能力,为各种应用场景带来了无限可能。然而,这些
- 深入理解Tomcat 基本架构
无心水
编程路上tomcat架构java深入理解TomcatServlet容器I/O模型NIO2
TheApacheTomcat®softwareisanopensourceimplementationoftheJavaServlet,JavaServerPages,JavaExpressionLanguageandJavaWebSockettechnologies.TheJavaServlet,JavaServerPages,JavaExpressionLanguageandJavaWebS
- LLM大语言模型学习笔记(1)
Arixs666
大语言模型语言模型笔记人工智能
1.概念大语言模型(LLM,LargeLanguageModel),也称大型语言模型,是一种旨在理解和生成人类语言的人工智能模型。LLM通常指包含数百亿(或更多)参数的语言模型,它们在海量的文本数据上进行训练,从而获得对语言深层次的理解。2.能力2.1涌现能力区分大语言模型(LLM)与以前的预训练语言模型(PLM)最显著的特征之一是它们的涌现能力。涌现能力是一种令人惊讶的能力,它在小型模型中不明显
- 大语言模型(LLM)笔记
笑衬人心。
大模型学习语言模型笔记人工智能
一、什么是大语言模型(LLM)?LLM(LargeLanguageModel)是基于Transformer架构构建,并在海量文本语料上训练出的具备自然语言理解和生成能力的深度神经网络模型。其本质任务是**预测下一个token(词/字/符号)**的概率分布,但通过大规模参数和数据的支持,表现出类人智能的行为。二、核心架构:Transformer由Google在2017年提出,是目前LLM的主流架构。
- Python XPath语法完全指南:从基础到高级应用
红皮西瓜绿了心
python爬虫
PythonXPath语法完全指南:从基础到高级应用XPath(XMLPathLanguage)是一种用于在XML和HTML文档中查找信息的语言,广泛应用于网页抓取、数据提取和自动化测试等领域。本文将全面介绍XPath的核心语法和高级用法,帮助您掌握这一强大的数据定位工具。一、XPath基础语法1.1节点选择XPath提供了多种节点选择方式:/:从根节点开始的绝对路径(如/html/body/di
- 【数据库】-2 mysql基础语句(上)
艾伦_耶格宇
数据库数据库mysql
文章目录1、SQL语句1.1SQL语句的简要介绍2、SQL语句的四种基本类型2.1DDL-数据库定义语言管理对象修改表的结构2.2DML-数据库操纵语言2.3DQL-数据库查询语言2.4DCL-数据库控制语言1、SQL语句1.1SQL语句的简要介绍SQL(StructuredQueryLanguage,结构化查询语言)是用于管理关系型数据库的标准语言,广泛应用于数据存储、查询、更新和管理等场景。它
- AI:微调框架 LLaMA-Factory(Large Language Model Factory)
xyzroundo
AI人工智能llama语言模型sftllama-factoryAI
LLaMA-Factory(LargeLanguageModelFactory)是由北航团队开源的高效大语言模型(LLM)微调框架,旨在简化大型语言模型的定制化训练流程,支持超过100种主流模型和多种先进微调技术。以下从核心功能、安装部署、微调流程和应用场景四个方面详细介绍:一、核心功能与特点广泛的模型支持支持LLaMA3、Mistral、Qwen、ChatGLM、Gemma、Phi、Yi、Bai
- python开发|yaml用法知识介绍
川石课堂软件测试
python数据库功能测试开发语言人工智能单元测试linux
随着互联网技术的快速发展,服务器编程变得越来越重要。Python作为一种强大的编程语言,越来越受到开发者的青睐。而PyYAML则是Python中最常用的YAML格式解析器之一,本文将系统介绍yaml知识01yaml介绍YAML(YAMLAin'tMarkupLanguage)是一种直观的数据序列化格式,它旨在以易于人类阅读和编写的方式表达数据。尽管名称中包含“不是标记语言”的表述,YAML在实际应
- 三分钟使用github的技巧
小白学CS
安装/使用教程运维githubgit
文章目录一、GitHub搜索技巧——找开发者二、GitHub搜索技巧——找项目三、in关键字限制搜索范围四、stars或fork数量去查找一、GitHub搜索技巧——找开发者搜索条件备注location:location:china,匹配用户填写的地址在chinalanguage:language:javascript,匹配开发语言为javascript的开发者followers:follower
- 利用视觉-语言模型搭建机器人灵巧操作的支架
三谷秋水
智能体大模型计算机视觉语言模型机器人人工智能计算机视觉机器学习
25年6月来自斯坦福和德国卡尔斯鲁厄理工的论文“ScaffoldingDexterousManipulationwithVision-LanguageModels”。灵巧机械手对于执行复杂的操作任务至关重要,但由于演示收集和高维控制的挑战,其训练仍然困难重重。虽然强化学习(RL)可以通过在模拟中积累经验来缓解数据瓶颈,但它通常依赖于精心设计的、针对特定任务的奖励函数,这阻碍了其可扩展性和泛化能力。
- 16.6 《3分钟扩容20实例!LanguageMentor容器化部署实战:高并发下的负载均衡与自动扩展方案》
少林码僧
负载均衡运维人工智能语言模型机器学习langchainllama
LanguageMentorAgent容器化部署与发布:高并发场景下的负载均衡与自动扩展关键词:KubernetesHPA,AWSAutoScaling,会话亲和性,监控指标,滚动更新1.高并发场景下的架构挑战LanguageMentor作为对话式Agent需要处理多用户同时在线会话,容器化部署需解决两个核心问题:
- 推荐系统的视频特征-视频关键帧特征提取与向量生成
总体流程概览视频文件(.mp4)↓关键帧抽取(FFmpeg/SceneDetect)↓帧图像(.jpg)↓图像模型提取特征(CLIP/CNN/ViT)↓多帧聚合成视频向量(均值池化等)↓向量库/推荐系统模型特征提取推荐:使用OpenAI的CLIP模型CLIP(ContrastiveLanguage-ImagePretraining)适合推荐系统做跨模态建模,对视频封面帧或场景帧提取效果非常好。✅1
- MySQL数据库
段帅龙呀
Linux数据库mysqllinux
数据库(Mysql)默认端口###port=3306数据文件默认位置/usr/local/mysql/data数据库的引擎###InnoDB存储引擎:默认引擎,最常用的。(支持事务)###查看当前默认存储引擎showvariableslike'%storage_engine%';数据库的种类###关系型数据库###非关系型数据库。sql语句#SQL(StructuredQueryLanguage即
- 面向大语言模型幻觉的关键数据集:系统性综述与分类法
致Great
语言模型人工智能自然语言处理
面向大语言模型幻觉的关键数据集:系统性综述与分类法摘要大语言模型(LargeLanguageModels,LLMs)在自然语言处理的多个领域取得了革命性进展,但其固有的“幻觉”问题——即生成看似合理但与事实不符或与上下文无关的内容——严重制约了其在关键应用中的可靠性与安全性。为了系统性地评估、理解并缓解LLM的幻觉现象,学术界和工业界开发了大量多样化的数据集与基准。本文对大模型幻觉领域的关键数据集
- 自然语言处理之文本生成:Recurrent Neural Networks (RNN):序列模型与语言模型
zhubeibei168
自然语言处理自然语言处理rnn语言模型人工智能机器翻译生成对抗网络
自然语言处理之文本生成:RecurrentNeuralNetworks(RNN):序列模型与语言模型自然语言处理简介NLP的基本概念自然语言处理(NaturalLanguageProcessing,简称NLP)是人工智能领域的一个重要分支
- 数据库 DML 语句详解:语法与注意事项
步行cgn
数据库数据库oracle
数据库DML语句详解:语法与注意事项DML(DataManipulationLanguage,数据操作语言)用于操作数据库中的数据,主要包括SELECT、INSERT、UPDATE、DELETE等语句。下面我将详细说明每种操作的语法、使用场景和关键注意事项。一、SELECT查询语句基本语法SELECT[DISTINCT]column1,column2,...FROMtable_name[WHERE
- 多模态大语言模型arxiv论文略读(145)
胖头鱼爱算法
#mllm_arxiv语言模型人工智能自然语言处理论文笔记论文阅读
ReasoningLimitationsofMultimodalLargeLanguageModels.AcasestudyofBongardProblems➡️论文标题:ReasoningLimitationsofMultimodalLargeLanguageModels.AcasestudyofBongardProblems➡️论文作者:MikołajMałkiński,SzymonPawlo
- 提示工程入门指南:如何有效地与大语言模型交互
止观止
大语言模型语言模型人工智能
本文深入拆解提示工程的核心概念、最佳实践和实用技巧。作为AI领域的热点技术,提示工程(PromptEngineering)能显著提升大语言模型(LargeLanguageModel,LLM)如DeepSeek的响应质量。文档结构概览引言:为什么需要提示工程?提示的定义与结构:上下文、指令、约束的完整解析提示工程原则:6项核心技巧有效vs无效提示对比:案例驱动的实操分析用户提示与系统提示:行为控制的
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$