特征值分解和特征向量

特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么。
如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式:
Av=λv
λ为特征向量v对应的特征值。特征值分解是将一个矩阵分解为如下形式:
A=QΣ
其中,Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对角矩阵,每一个对角线元素就是一个特征值,里面的特征值由从大到小排列的,这些特征值所对应的特征向量就是描述这个矩阵变化方向(从主要的变化到次要的变化排列)。也就是说矩阵A的信息可以由特征值和特征向量表示。
对于矩阵为高维的情况下,那么这个矩阵就是高维空间下的一个线性变换。可以想象,这个变换也同样有很多的变换方向,我们通过特征值分解得到的前N个特征向量,那么就对应了这个矩阵最主要的N个变化方向。我们利用这前N个变化方向,就可以近似这个矩阵(变换)。

摘抄自:https://github.com/scutan90/DeepLearning-500-questions

你可能感兴趣的:(特征值分解和特征向量)