- 无人值守人工智能智慧系统数据分析:深度洞察与未来展望
呆码科技
人工智能数据分析数据挖掘
无人值守人工智能智慧系统数据分析:深度洞察与未来展望随着科技的飞速发展,人工智能(AI)技术已逐渐渗透到社会经济的各个领域,其中无人值守人工智能智慧系统作为AI技术应用的前沿阵地,正引领着一场深刻的行业变革。这类系统通过集成高级算法、大数据分析、物联网(IoT)及云计算等先进技术,实现了对复杂环境的自主监控、智能决策与高效管理,极大地提升了运营效率,降低了人力成本,并开启了数据驱动决策的新纪元。本
- 论“人工智能生命体”站在那个高度?(之二)
中國龍在廣州
人工智能-智能体-具身智能人工智能
第一部分:人工智能生命体人工智能生命体,提及的是《人工智能生命体新启点》一书,原文附后,本文中以本书代表。《人工智能生命体新启点》一书,是在现今科学技术发展,从人工智能、智能体、具身智能等大环境下,形成的一种全新理念的理论指导,以此发展出具有自我意识的人工智能生命体,拥有现代科技并以生命体的形式出现,具备类人类般的思想活动,更好的体现与融入人类的社会环境;具有自我意识的智能生命体就如人类的拥有大脑
- 医疗AI与融合数据库的整合:挑战、架构与未来展望(上)
Allen_Lyb
数智化教程(第二期)人工智能数据库架构
引言随着人工智能(AI)在医疗健康领域的广泛应用,数据已成为医疗AI发展的核心驱动力。然而,医疗数据具有极度的异构性(包括结构化电子病历、医学影像向量、基因组JSON/图结构、传感器时序等),传统数据架构难以高效整合。因数据孤岛、复杂ETL流程以及昂贵维护成本,医疗AI平台通常难以充分发挥价值。融合数据库(ConvergedDatabase/多模态一体化数据库)通过支持SQL、JSON、图、向量、
- 一文看懂:马斯克旗下人工智能公司 xAI 正式推出的Grok 4,Grok 4 如何开启 “多智能体内生化” 的 AI 新范式,重塑多模态大模型与 AI Agent 未来
陈敬雷-充电了么-CEO兼CTO
《GPT多模态大模型与AIAgent智能体》新书内容人工智能gptagichatgpt大模型deeplearning神经网络
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列二十六一文看懂:马斯克旗下人工智能公司xAI正式推出的Grok4,Grok4如何开启“多智能体内生化”的AI新范
- 大模型开源王炸!Kimi K2凭万亿参数撕开大模型天花板:代码、Agent、推理全碾压,32家企业疯抢接入
陈敬雷-充电了么-CEO兼CTO
《GPT多模态大模型与AIAgent智能体》新书内容transformerchatgpt深度学习lstmkimiAgentAIGC
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列二十七开源王炸!KimiK2凭万亿参数撕开大模型天花板:代码、Agent、推理全碾压,32家企业疯抢接入一、架构
- Prompt:开启与AI高效对话的钥匙
解密Prompt:开启与AI高效对话的钥匙一、什么是Prompt?——AI的“使用说明书”想象一下,你正在指挥一位无所不知但毫无主动性的“实习生”——人工智能(AI)。你不能指望它“心领神会”,你必须给出清晰、具体的指令,它才能准确地完成你想要的任务。这个指令,就是Prompt(提示或提示词)。简单来说,Prompt是你向AI(如大型语言模型LLM)发出的文本或问题,用以引导它生成特定的、高质量的
- opencv 4.12.0版本发布详解:核心优化与新特性全解析
Risehuxyc
#opencvopencv人工智能计算机视觉
OpenCV4.12.0夏季更新带来核心模块优化、图像处理增强、深度学习支持扩展及新兴硬件适配,全面提升计算机视觉开发效率与性能。引言OpenCV(开源计算机视觉库)作为计算机视觉领域最受欢迎的开源库之一,在2025年7月发布了4.12.0版本。这个夏季更新带来了大量性能优化、新功能和错误修复,覆盖了核心模块、图像处理、3D校准、深度学习等多个领域。本文将详细介绍OpenCV4.12.0的主要更新
- BPE(字节对编码)和WordPiece 是什么
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython机器学习算法人工智能transformer深度学习
BPE(字节对编码)和WordPiece是什么BPE(字节对编码)和WordPiece是自然语言处理中常用的子词分词算法,它们通过将文本拆分为更小的语义单元来平衡词汇表大小和表达能力。BPE(BytePairEncoding,字节对编码)原理初始化:将文本按字符(或Unicode字节)拆分为最小单元,形成初始词汇表。统计合并:迭代合并最频繁出现的相邻字符对,形成新的子词单元,直到达到预设的词汇表大
- AI人工智能中Actor - Critic算法的深入解析与应用场景
AI智能探索者
AIAgent智能体开发实战人工智能算法ai
AI人工智能中Actor-Critic算法的深入解析与应用场景关键词:Actor-Critic、强化学习、策略梯度、价值函数、深度强化学习、马尔可夫决策过程、A2C/A3C摘要:本文将深入解析Actor-Critic算法的核心原理,从基础概念到数学推导,再到实际应用场景。我们将通过生动的比喻解释这一强化学习中的重要算法,展示其Python实现代码,并探讨它在游戏AI、机器人控制等领域的应用。最后,
- AI人工智能领域多模态大模型的发展历程回顾
AI智能探索者
AIAgent智能体开发实战人工智能ai
AI人工智能领域多模态大模型的发展历程回顾关键词:AI人工智能、多模态大模型、发展历程、技术演变、应用场景摘要:本文旨在全面回顾AI人工智能领域多模态大模型的发展历程。通过对不同阶段核心概念、算法原理、数学模型等方面的深入剖析,结合实际项目案例,探讨其在各个领域的应用场景。同时,推荐相关的学习资源、开发工具和重要论文著作,最后总结多模态大模型的未来发展趋势与挑战,并对常见问题进行解答。1.背景介绍
- AI人工智能领域Actor - Critic算法的可视化分析
AI智能探索者
AIAgent智能体开发实战人工智能算法ai
AI人工智能领域Actor-Critic算法的可视化分析关键词:Actor-Critic算法、强化学习、策略梯度、价值函数、可视化分析、神经网络、马尔可夫决策过程摘要:本文深入浅出地讲解Actor-Critic算法的核心原理,通过生活化的比喻和可视化分析,帮助读者理解这一强化学习中的重要算法。我们将从基础概念入手,逐步剖析算法架构,并通过Python代码实现和可视化演示,展示算法在实际问题中的应用
- 如何用深度学习实现图像风格迁移
最近研学过程中发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击链接跳转到网站人工智能及编程语言学习教程。读者们可以通过里面的文章详细了解一下人工智能及其编程等教程和学习方法。下面开始对正文内容的介绍。前言图像风格迁移是人工智能领域中一个非常有趣且富有创意的应用。它能够让一张普通的照片瞬间变成梵高笔下的《星月夜》风格,或者像莫奈的《睡莲》一样充满艺术感。这种技术不仅在
- AI人工智能领域TensorFlow的模型训练策略
AIGC应用创新大全
人工智能tensorflowpythonai
AI人工智能领域TensorFlow的模型训练策略关键词:TensorFlow、模型训练、深度学习、神经网络、优化策略、分布式训练、迁移学习摘要:本文将深入探讨TensorFlow框架下的模型训练策略,从基础概念到高级技巧,全面解析如何高效训练深度学习模型。我们将从数据准备、模型构建、训练优化到部署应用,一步步揭示TensorFlow模型训练的核心技术,并通过实际代码示例展示最佳实践。背景介绍目的
- Actor - Critic:AI人工智能领域的新宠儿
Actor-Critic:AI人工智能领域的新宠儿关键词:强化学习、Actor-Critic、策略梯度、价值函数、深度强化学习、A2C、A3C摘要:Actor-Critic是强化学习领域的一种重要算法框架,它结合了策略梯度方法和价值函数方法的优点,成为近年来人工智能领域的热门研究方向。本文将用通俗易懂的方式介绍Actor-Critic的核心概念、工作原理、实现方法以及实际应用,帮助读者理解这一强大
- 探索AI人工智能中遗传算法的进化奥秘
AI学长带你学AI
人工智能ai
探索AI人工智能中遗传算法的进化奥秘关键词:遗传算法、自然选择、基因编码、适应度函数、群体进化、交叉变异、优化问题摘要:本文将用生物进化视角解读人工智能中的遗传算法原理。通过达尔文进化论的生活化比喻,结合Python代码实例演示如何模拟基因遗传、自然选择等过程,揭示遗传算法在路径规划、参数优化等场景的应用奥秘。最后探讨遗传算法的局限性与未来发展方向。背景介绍目的和范围本文旨在用通俗易懂的方式解析遗
- 深度剖析AI人工智能领域多模态大模型
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能ai
深度剖析AI人工智能领域多模态大模型关键词:AI人工智能、多模态大模型、模型架构、算法原理、应用场景摘要:本文旨在对AI人工智能领域的多模态大模型进行深度剖析。首先介绍多模态大模型的背景知识,包括目的、预期读者等。接着阐述核心概念,分析其架构和原理,并给出相应的流程图。通过Python代码详细讲解核心算法原理和具体操作步骤,同时用数学模型和公式进一步阐释。在项目实战部分,给出实际案例及详细代码解读
- Open AI在AI人工智能领域的创新之路
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能ai
OpenAI在AI人工智能领域的创新之路关键词:OpenAI、人工智能、创新之路、技术突破、应用场景摘要:本文深入探讨了OpenAI在AI人工智能领域的创新之路。首先介绍了OpenAI的背景信息,包括其成立目的、发展历程等。接着详细阐述了OpenAI的核心概念,如强化学习、生成式对抗网络等,并通过示意图和流程图展示其原理和架构。然后讲解了相关核心算法原理,结合Python代码进行具体说明。同时,给
- 探索AI人工智能领域Actor - Critic的无限潜力
探索AI人工智能领域Actor-Critic的无限潜力关键词:AI人工智能、Actor-Critic、强化学习、策略网络、价值网络摘要:本文将深入探索AI人工智能领域中Actor-Critic方法的无限潜力。我们会先介绍其背景知识,接着用通俗易懂的方式解释核心概念,包括Actor和Critic的含义及它们之间的关系,然后阐述其核心算法原理和具体操作步骤,还会给出数学模型和公式并举例说明。通过项目实
- ROS2 通过相机确定物品坐标位置
要实现通过相机确定物品坐标位置,通常需要相机标定、物体检测和坐标转换几个步骤。下面我将提供一个完整的解决方案,包括相机标定、物体检测和3D坐标估计。1.系统架构相机标定-获取相机内参和畸变系数物体检测-使用OpenCV或深度学习模型检测物品坐标转换-将2D图像坐标转换为3D世界坐标ROS2集成-将上述功能集成到ROS2节点中2.实现步骤2.1创建功能包bashros2pkgcreateobject
- AI人工智能领域多模态大模型的技术瓶颈与解决方案
AI学长带你学AI
人工智能ai
AI人工智能领域多模态大模型的技术瓶颈与解决方案关键词:多模态大模型、技术瓶颈、跨模态对齐、计算效率、数据稀缺、模型泛化、解决方案摘要:本文深入探讨了AI人工智能领域多模态大模型发展过程中面临的主要技术瓶颈,包括跨模态对齐困难、计算资源消耗巨大、高质量多模态数据稀缺、模型泛化能力不足等问题。针对这些挑战,我们提出了系统性的解决方案,涵盖算法优化、架构创新、数据增强等多个维度。文章通过理论分析、数学
- 【杂谈】-人工智能:从无序部署到可问责治理的转型之路
人工智能:从无序部署到可问责治理的转型之路文章目录人工智能:从无序部署到可问责治理的转型之路1、失控的人工智能与“漂移”现象的潜在危机2、穿透迷雾:探寻人工智能治理的真谛3、民主化进程中的治理觉醒4、迈向未来:构建可问责的人工智能生态体系5、抉择时刻:关乎人工智能发展走向的关键权衡人工智能已然步入一个关键的转折阶段。当下,众多企业竞相投身于各类人工智能系统的部署浪潮之中,从功能多样的生成式人工智能
- 自动字幕生成器:Auto-Subtitle — 技术解析与应用指南
房耿园Hartley
自动字幕生成器:Auto-Subtitle—技术解析与应用指南在视频内容日益丰富的今天,自动字幕生成工具变得越来越重要,尤其是对于听障人士、非母语者和在嘈杂环境下观看视频的人来说。Auto-Subtitle是一个开源项目,它利用先进的自然语言处理(NLP)技术为你的视频自动生成准确的字幕。本文将深入探讨这个项目的原理、功能、应用场景及特点,以期吸引更多开发者和用户关注并使用。项目简介Auto-Su
- 从“直觉抢答”到“深度思考”:大模型的“慢思考”革命,思维链、树、图如何让AI越来越像人?
陈敬雷-充电了么-CEO兼CTO
《GPT多模态大模型与AIAgent智能体》新书内容人工智能chatgptAIGC神经网络python大模型思维链
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列十六从“直觉抢答”到“深度思考”:大模型的“慢思考”革命,思维链、树、图如何让AI越来越像人?引言:当AI从“快
- NUS:LLM表格数据建模综述
标题:LanguageModelingonTabularData:ASurveyofFoundations,TechniquesandEvolution来源:arXiv,2408.10548摘要表格数据是一种跨领域的流行数据类型,由于其异构性和复杂的结构关系,带来了独特的挑战。在表格数据分析中实现高预测性能和鲁棒性对许多应用程序具有重大前景。受自然语言处理,特别是转换器架构的最新进展的影响,出现了
- 【机器学习&深度学习】什么是量化?
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、量化的基本概念1.1量化对比示例1.2量化是如何实现的?二、为什么要进行量化?2.1解决模型体积过大问题2.2降低对算力的依赖2.3加速模型训练和推理2.4优化训练过程2.5降低部署成本小结:量化的应用场景三、量化的类型与实现3.1权重量化(WeightQuantization)3.2激活量化(ActivationQuantization)3.3梯度量化(GradientQuantiz
- 基于AutoCut实现在文档中按照片段剪辑视频
Mr数据杨
Python音频技术音视频
本项目致力于通过构建一个具备深度学习支持的多功能视频处理环境,为用户提供高效、智能的视频编辑和字幕生成工具。依托Anaconda环境管理工具和PyTorch的GPU加速能力,用户能够迅速搭建一个符合项目需求的Python环境。结合FunClip的源代码以及相关插件的安装和配置,用户可充分利用项目所支持的图像、音频识别功能,并以极少的配置便获得理想的视频裁剪效果。项目的核心在于简化深度学习项目的环境
- 基于深度学习的和平精英(吃鸡)内置锁头训练
摆烂仙君
深度学习人工智能
前言本教程以和平精英为例,主要讲解如何构建深度学习模型对游戏中角色进行头部标注,并控制鼠标对其进行锁定射击,同时围绕其游戏防作弊系统进行算法攻防讲解,该方案对于csgo,cf等游戏也同样适用。请注意,该教程仅供娱乐教学,若本教程评论超过100,将会开源相关代码并对实际的代码部署进行进一步分析。一、和平精英伤害机制分析在《刺激战场》(现为《和平精英》)中,击中头部的伤害远高于身体其他部位,这是由游戏
- 基于蜣螂算法优化多头注意力机制的卷积神经网络结合双向长短记忆神经网络实现温度预测DBO-CNN-biLSTM-Multihead-Attention附matlab代码
matlab科研助手
神经网络算法cnn
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍温度预测在气象学、农业、能源等领域具有重要的应用价值。随着大数据和人工智能技术的快速发
- 迁移学习让深度学习更容易
城市中迷途小书童
摘要:一文读懂迁移学习及其对深度学习发展的影响!深度学习在一些传统方法难以处理的领域有了很大的进展。这种成功是由于改变了传统机器学习的几个出发点,使其在应用于非结构化数据时性能很好。如今深度学习模型可以玩游戏,检测癌症,和人类交谈,自动驾驶。深度学习变得强大的同时也需要很大的代价。进行深度学习需要大量的数据、昂贵的硬件、甚至更昂贵的精英工程人才。在ClouderaFastForward实验室,我们
- 股票基金量化开源平台对比
Mr.小海
开源开源金融
股票基金量化开源平台对比分析报告引言研究背景与意义在金融科技快速发展的背景下,量化交易已成为现代金融市场中投资者追求高效与精准交易的核心工具。通过程序化方式,投资者能够迅速处理海量市场数据,制定并执行复杂交易策略,其高效性、低情绪干扰及策略多样性等优势显著[1]。特别是随着人工智能技术的深化,2025年基于深度学习与机器学习的开源量化工具持续涌现,推动行业向数据驱动转型——量化交易将决策逻辑从经验
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>