- 鸿蒙开发:权限管理之权限声明
前言本文基于Api13。为什么要有权限管理?最大原因是提高用户对隐私和数据安全的控制权,防止恶意软件滥用权限,试想一下,如果没有权限管理,肯定会有一些恶意软件利用这些默认授权权限,获取用户的敏感信息,对用户隐私构成威胁,这是其一,其二就是用户的体验,因为用户无法根据自己的需求授权权限,可能导致不必要的权限被授予,于公于私,于情于理,权限管理都是必须且坚决要执行的。鸿蒙生态中,可以说,权限管理从始
- 用Python打造智能姓名生成器:从数据分离到AI赋能
灏瀚星空
python人工智能开发语言经验分享笔记
用Python打造智能姓名生成器:从数据分离到AI赋能目录项目概述与功能清单环境准备与工具选择项目架构设计核心代码实现AI古文解析模块交互界面开发使用示例与效果展示扩展思路与优化建议1.项目概述与功能清单核心功能数据管理CSV文件存储姓氏/名字库支持用户导入/导出数据交互界面姓名生成与实时预览已选名单管理(增删改查)排除词输入框(黑名单过滤)AI赋能从古文中提取字词及注解自动生成姓名寓意解析扩展功
- 鸿蒙开发:权限管理之权限声明
前言本文基于Api13。为什么要有权限管理?最大原因是提高用户对隐私和数据安全的控制权,防止恶意软件滥用权限,试想一下,如果没有权限管理,肯定会有一些恶意软件利用这些默认授权权限,获取用户的敏感信息,对用户隐私构成威胁,这是其一,其二就是用户的体验,因为用户无法根据自己的需求授权权限,可能导致不必要的权限被授予,于公于私,于情于理,权限管理都是必须且坚决要执行的。鸿蒙生态中,可以说,权限管理从始
- Stable Diffusion API /sdapi/v1/txt2img的完整参数列表及其说明
aerror
stablediffusion
基本参数{"prompt":"高质量,精细的恐龙",//主提示词"negative_prompt":"模糊,低质量",//负面提示词"styles":["photorealistic","detailed"],//应用的风格预设"seed":42,//随机种子,-1为随机"subseed":-1,//次级种子"subseed_strength":0.3,//次级种子影响强度(0-1)"seed_r
- 利用Java爬虫根据关键词获取商品列表:实战指南
数据小爬虫@
java爬虫开发语言
在电商领域,通过关键词搜索商品并获取商品列表是常见的需求。本文将详细介绍如何使用Java编写爬虫程序,根据关键词获取商品列表,并确保爬虫行为符合平台规范。为了确保代码的准确性和实用性,我们将提供详细的代码示例和解释。一、环境准备(一)Java开发环境确保你的系统中已安装Java开发环境,推荐使用JDK11或更高版本。(二)安装所需库使用Maven管理项目依赖,主要包括以下库:Jsoup:用于解析H
- 一览无遗 python 自定义装饰器使用及原理详解
1_bit
pythonflaskpythonflask开发语言装饰器
注意:先行知识python,本篇文章所有代码均为实际运行,为原理和逻辑讲解一、装饰器装饰器是python中的一种语法糖,虽然我不想用语法糖这个词来表达,但这句话写在了开头,我也不到用别的更准确的词来形容他了。如果你刚接触编程不久,不理解语法糖,也没关系;在这里我说语法糖并不会影响到你接下来的理解,我只是用它在赘述,作为了一种形容词。首先我们要搞懂装饰器是什么东西,其次搞懂装饰器的基础知识点,最后逐
- 【NLP】 9. 处理创造性词汇 & 词组特征(Creative Words & Features Model), 词袋模型处理未知词,模型得分
pen-ai
NLP机器学习自然语言处理人工智能深度学习
这里写目录标题处理创造性词汇&词组特征(CreativeWords&FeaturesModel)1.处理否定(NegationHandling)2.词组特征(Bigrams&N-grams)3.结合否定传播与n-grams进行优化词袋模型(Bag-of-Words,BoW)1.BoW示例2.处理未知词3.为什么忽略未知词?4.处理未知词的方法计算模型得分(ScoreCalculation)处理创造
- python-提示词对大模型推理有多重要?
给自己做加法
pythonpython语言模型
文章目录前言测试一个失败的提示词提示词内容knowledge内容提问的内容得到的回答说点啥能引导的提示词提示词内容knowledge内容提问的内容得到的回答说点啥结束语前言神级提示词一度成为AI圈的热搜,那么提示词对大模型推理到底有多重要?测试一个失败的提示词提示词内容基础知识:{knowledge};问题:{question};根据已知知识和基础知识回答问题knowledge内容{"商品名称":
- 自动语音识别(ASR)模型全览
u013250861
#语音识别人工智能
以下为截至2024年底主流ASR模型的详细列表,涵盖传统模型、端到端模型、开源框架及商业解决方案,按技术类型分类整理,并标注适用场景:一、传统混合模型(GMM/HMM、DNN/HMM)GMM/HMM公开时间:1980年代参数量:百万级(依赖状态数)特点:基于高斯混合模型(GMM)与隐马尔可夫模型(HMM)结合,需手工对齐音素状态。适用场景:早期电话语音识别(嵌入式设备)、孤立词识别(工业控制终端)
- 【开源所有代码-全在线智能音箱】树莓派智能音箱,自定义唤醒词,大模型LLM GPT对话
南七小僧
服务器开发人工智能AI技术产品经理智能音箱gpt
安装sounddevicepipinstallsounddevice安装portAudiosudoapt-getinstalllibportaudio2sudoapt-getinstalllibasound-devsudoapt-getinstallportaudio.devsudoapt-getinstallpython3-pyaudiopipinstallpyaudio安装wavepipins
- 毕业论文如何进行自查?
kexiaoya2013
论文笔记论文阅读AIGC
又到了一年的毕业季,论文提交也进入了倒计时。不少同学在最后关头才发现论文存在各种问题。与其事后补救,还不如提前进行论文自查。一、内容自查1、核心要素是否完整检查论文标题是否简洁明确,摘要是否概括了研究目的、方法、结论,关键词是否精准覆盖了主题。2、逻辑是否清晰连贯从引言到结论,需层层递进。引言需说明研究背景与意义,主体章节需有明确的研究方法、数据分析和讨论,结论应总结成果并提出展望,避免与正文内容
- 基于 svm 的金融咨询情感分析
ouprince
NLPsvm情感分析
详细代码与代码说明可见我的github:https://github.com/ouprince/svm处理流程:(1)金融咨询处理1.利用7万多条利好/利空语料(已经标注好的,分为1正性,-1负性两类),首先采用B-gram卡方差提取特征词汇2.使用卡方提取的特征词为每一篇咨询建立向量表示模型3.使用向量进行svm分割,训练语料80%,测试语料20%,并评估模型准确率,保存模型。4.加载保存的模型
- 基于ASP.NET校园二手交易网站设计与实现
汐泽学园
asp.net后端
摘要校园二手交易市场伴随互联网技术的迅猛发展以及校园内资源共享需求的增长而逐渐兴起。基于ASP.NET开发的校园二手交易网站,目的在于为高校师生打造一个便捷、安全且高效的二手物品交易平台。此网站借助ASP.NET技术开展开发工作,并且结合SQLServer数据库来存储数...关键词ASP.NET;校园二手交易;网站设计AbstractWiththerapiddevelopmentofInterne
- LangChain深度解析以及主要应用场景
小Rr
langchainpythondjangonumpy
文章目录LangChain是什么?LangChain的核心组件(1)PromptTemplates(提示模板)原理代码实例应用场景提示词优化策略(2)LLMs(大语言模型)原理代码实例应用场景调优策略(3)Chains(多步任务链)原理代码实例应用场景优化策略(4)Memory(记忆)原理代码实例应用场景优化策略(5)Agents(智能代理)原理代码实例应用场景优化策略案例分享案例1:电商智能客服
- 【深度学习与大模型基础】第3章-张量
lynn-66
深度学习与大模型基础深度学习人工智能
大家好!今天我们来聊聊张量(Tensor)。别被这个词吓到,其实它没那么复杂。什么是张量?简单来说,张量就是一个多维数组。你可以把它看作是一个装数据的容器,数据的维度可以是一维、二维,甚至更高。标量(0维张量):就是一个单独的数字,比如3。向量(1维张量):一串数字,比如[1,2,3]。矩阵(2维张量):一个表格,比如[[1,2],[3,4]]。更高维张量:比如[[[1,2],[3,4]],[[5
- MySQL 全文搜索 (FULLTEXT) vs 合并字段模糊查询 (LIKE) 对比
曹天骄
mysql数据库
在MySQL中,使用FULLTEXT索引通常比将多个字段合并到一个新字段(如search_text)中进行模糊查询更快,尤其是在数据量较大时。以下是详细对比:1.FULLTEXT索引的优势专门优化:FULLTEXT索引是为全文搜索设计的,能够高效处理文本匹配。分词搜索:FULLTEXT支持分词搜索(基于空格或特定字符),可以快速定位关键词。性能更好:对于大文本字段或多字段联合搜索,FULLTEXT
- 算法笔记(七)——哈希表
闪电麦昆️
算法算法笔记哈希c++
文章目录两数之和判定是否互为字符重排存在重复元素存在重复元素II字母异位词分组哈希表:一种存储数据的容器;可以快速查找某个元素,时间复杂度O(1);当频繁查找某一个数时,我们可以使用哈希表创建一个容器(unordered_map)用数组模拟一个简易哈希表容器数据结构unordered_mapmapunorded_setset实现机理hashRBThashRBT元素格式key+valuekey+va
- 从人工智能窥见网络安全的重要性
He_Donglin
人工智能web安全网络
“人工智能”一词在上世纪五十年代被提出,在当时,计算机正处于萌芽阶段,同时期的人类第一台电子计算机“ENIAC”诞生了,但是埃尼亚克有很多缺点:庞大的占地面积、庞大的质量、单一的功能、较小的内存等,这主要受制于其他领域的发展,但当时的人们对计算机寄予厚望,希望在未来某一天它能够拥有足够强大的“power”,帮助人们解决诸多问题。于是乎,经过无数科学家数十年来的努力,计算机“长大了”,它的功能不再单
- python 基于混合式推荐算法的学术论文投稿系统
mosquito_lover1
python知识图谱
基于混合式推荐算法的学术论文投稿系统是一个结合多种推荐技术(如基于内容的推荐、协同过滤、知识图谱等)来为研究者推荐合适期刊或会议投稿的系统。以下是实现该系统的关键步骤和Python代码示例。系统设计思路1.数据收集与预处理:-收集论文数据(标题、摘要、关键词、作者信息等)。-收集期刊/会议数据(领域、主题、影响因子、投稿要求等)。-对文本数据进行预处理(分词、去停用词、向量化等)。2.推荐算法设计
- 如何用爬虫根据关键词获取商品列表:一份简单易懂的代码示例
API小爬虫
爬虫
在当今数字化时代,网络爬虫已经成为数据收集和分析的强大工具。无论是市场调研、价格监控还是产品分析,爬虫都能帮助我们快速获取大量有价值的信息。今天,我们就来探讨如何通过编写一个简单的爬虫程序,根据关键词获取商品列表。以下是一个基于Python语言的代码示例,适合初学者学习和实践。一、准备工作在开始编写爬虫之前,我们需要准备以下工具和库:Python环境:确保你的电脑上安装了Python。推荐使用Py
- 软件2.0的无服务器计算架构
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《软件2.0的无服务器计算架构》关键词无服务器计算软件架构软件2.0事件驱动函数编程微服务云原生摘要本文深入探讨了软件2.0时代的无服务器计算架构。首先,我们回顾了无服务器计算的兴起背景,与传统服务器计算的区别,以及其设计理念。接着,介绍了主流的无服务器平台,并探讨了无服务器计算在软件2.0中的应用。随后,我们详细阐述了无服务器计算的核心技术,包括事件驱动架构、编写无服务器函数、无服务器数据库和无
- 百度快速收录2025最新科普
SEORoal
百度
跨境物流的智能突围战宁波某RCEP跨境物流平台接入214维特征矩阵后:✅'智能清关系统’72小时冲进TOP3✅'东盟电子报关’长尾词覆盖量暴涨4.2倍✅日均有效询盘突破300+技术三板斧:标题智能提取引擎(支持38种语义变异)动态阻抗参数混淆(误差≤0.15μΩ)实时工商特征同步(每2小时更新)2025生存指南:采用神经网络语义映射(NLP准确率98.2%)部署质量监控系统(误差率≤0.15%)加
- 百度快速收录2025秒收方法实战解析
SEO黑猫
百度
医疗门户网站48小时收录奇迹2023年底,某三甲医院官网改版后遭遇收录难题。通过我们部署的蜘蛛池智能调度系统,配合标题关键词矩阵布局(含’标题内提取’技术),成功实现48小时内全站收录。核心操作步骤:页面指纹构建采用动态TDK模板(例:『科室{科室}科室{病症}_${年份}最新诊疗方案』)植入地域长尾词(如’北京医保报销政策’)蜘蛛池配置方案#智能蜘蛛路由算法示例defschedule_spide
- EventStream 处理实时数据流
小怪兽,让我来保护你
javascriptnode.jsvue.jsscss
简介text/event-stream和application/octet-stream本质上都是客户端与服务端打开了一个长连接,服务端可以多次写入一部分数据给客户端,客户端可以多次读取,直到全部读取完成。使用场景很多,例如:模拟机器人回复,几个词几个词的展示。下面我就以最近的一个功能需求为例,展示一下该如何使用event-stream:streamBack(){consturl="/api/..
- 【开源代码解读】AI检索系统R1-Searcher通过强化学习RL激励大模型LLM的搜索能力
accurater
人工智能深度学习R1-Searcher
关于R1-Searcher的报告:第一章:引言-AI检索系统的技术演进与R1-Searcher的创新定位1.1信息检索技术的范式转移在数字化时代爆发式增长的数据洪流中,信息检索系统正经历从传统关键词匹配到语义理解驱动的根本性变革。根据IDC的统计,2023年全球数据总量已突破120ZB,其中非结构化数据占比超过80%。这种数据形态的转变对检索系统提出了三个核心的挑战:语义歧义消除:如何准确理解"A
- 438. 找到字符串中所有字母异位词
Zannnne
leetcode
438.找到字符串中所有字母异位词题号:力扣438知识点:字符串,滚动窗口目标完成度:59/150总结题干:思路:1.如果s的长度小于p,则s中必然找不到与p是异位词的子串。2.异位词的特点是每个字母出现的次数一直,但是出现的顺序不一定相同。因此我们建立两个容器,来记录p中和滚动窗口中每个字母出现的次数,由于字母一共只有26个,所以容易大小为26。3.第一个for循环相当于是对scount进行初始
- 【忍者算法】从找朋友到找变位词:一道趣味字符串问题的深入解析|LeetCode 438 找到字符串中所有字母异位词
忍者算法
忍者算法LeetCode题解秘籍leetcode算法职场和发展面试跳槽
LeetCode438找到字符串中所有字母异位词点此看全部题解LeetCode必刷100题:一份来自面试官的算法地图(题解持续更新中)生活中的算法还记得小时候玩的"找朋友"游戏吗?每个人都有一个字母牌,需要找到拥有相同字母组合的伙伴。比如,拿着"ate"的同学要找到拿着"eat"或"tea"的同学。这其实就是在寻找字母异位词!在实际应用中,字母异位词的检测有着广泛的用途。比如在密码学中检测可能的密
- 信息检索系统评估指标的层级分析:从单点精确度到整体性能度量
人工智能深度学习llm检索系统
在构建搜索引擎系统时,有效的评估机制是保证系统质量的关键环节。当用户输入查询词如"machinelearningtutorialspython",系统返回结果列表后,如何客观评估这些结果的相关性和有效性?这正是信息检索评估指标的核心价值所在。分析用户与搜索引擎的交互模式,我们可以观察到以下行为特征:用户主要关注结果列表的前几项对顶部结果的关注度显著高于底部结果用户基于多次搜索体验形成对搜索系统整体
- 用Python玩转Hyperledger:构建企业级区块链解决方案
Echo_Wish
Python!实战!perlpythonopencv人工智能
用Python玩转Hyperledger:构建企业级区块链解决方案大家好,我是Echo_Wish。在区块链技术的炙手可热中,“企业级区块链”俨然成为了下一个重磅关键词。相比于公有区块链,企业级区块链更注重隐私性、灵活性和高效性。而在这片“蓝海”中,Hyperledger项目无疑是企业级区块链解决方案的标杆。如果再搭配上Python这种“高效工具”,简直让人事半功倍!那么,如何将Python与Hyp
- 解码数字基因:数据架构如何重塑企业核心竞争力?——全面解析数据架构的战略价值与实践路径
领码科技
产业篇央国企技能篇数据架构数据模型数据资产目录企业数字化转型TOGAF
摘要:数据架构作为企业数字化转型的“基因图谱”,通过整合业务需求与IT实现,构建起数据流动的规则体系。本文系统剖析数据架构的四大核心组件(数据资产目录、数据模型、数据标准、数据分布)及其协同逻辑,揭示其在TOGAF4A架构中的桥梁作用,解读从架构规划到主数据落地的全生命周期管理。结合华为等标杆企业实践,提供兼具理论深度与实操指导的方法论框架,助力企业打造高质量数据底座。关键词:数据架构、数据模型、
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite