注意:此代码实现的是求目标函数最大值,求最小值可将适应度函数乘以-1(框架代码已实现)。
注意:此代码实现的是求目标函数最大值,求最小值可将适应度函数乘以-1(框架代码已实现)。
注意:此代码实现的是求目标函数最大值,求最小值可将适应度函数乘以-1(框架代码已实现)。
1.代码实现
不了解蝗虫算法可以先看看优化算法笔记(二十八)蝗虫算法
实现代码前需要先完成优化算法matlab实现(二)框架编写中的框架的编写。
文件名 | 描述 |
---|---|
..\optimization algorithm\frame\Unit.m | 个体 |
..\optimization algorithm\frame\Algorithm_Impl.m | 算法主体 |
以及优化算法matlab实现(四)测试粒子群算法中的测试函数、函数图像的编写。
文件名 | 描述 |
---|---|
..\optimization algorithm\frame\Get_Functions_details.m | 测试函数,求值用 |
..\optimization algorithm\frame\func_plot.m | 函数图像,画图用 |
蝗虫算法的个体没有独有属性。
蝗虫算法个体
文件名:.. \optimization algorithm\algorithm_grasshopper\GOA_Unit.m
% 蝗虫算法个体
classdef GOA_Unit < Unit
properties
end
methods
function self = GOA_Unit()
end
end
end
蝗虫算法算法主体
文件名:..\optimization algorithm\algorithm_grasshopper\GOA_Base.m
% 蝗虫算法
classdef GOA_Base < Algorithm_Impl
properties
% 算法名称
name = 'GOA';
end
% 外部可调用的方法
methods
function self = GOA_Base(dim,size,iter_max,range_min_list,range_max_list)
% 调用父类构造函数
self@Algorithm_Impl(dim,size,iter_max,range_min_list,range_max_list);
self.name ='GOA';
end
end
% 继承重写父类的方法
methods (Access = protected)
% 初始化种群
function init(self)
init@Algorithm_Impl(self)
%初始化种群
for i = 1:self.size
unit = GOA_Unit();
% 随机初始化位置:rand(0,1).*(max-min)+min
unit.position = unifrnd(self.range_min_list,self.range_max_list);
% 计算适应度值
unit.value = self.cal_fitfunction(unit.position);
% 将个体加入群体数组
self.unit_list = [self.unit_list,unit];
end
end
% 每一代的更新
function update(self,iter)
update@Algorithm_Impl(self,iter)
% 获取最优个体id
best_id = self.get_best_id();
% 获取该代的变量c
c = self.get_c(iter);
for i = 1:self.size
% 获取每一维的最大距离
dist_dim_max = self.get_dist_dim_max(i) + realmin('double');
new_pos = zeros(1,self.dim);
for j = 1:self.size
if i == j
continue
end
% 获取两个体间距离,加上较小数,避免分母为0
distance = self.get_distance(i,j)+ realmin('double');
dist_dim = abs(self.unit_list(i).position-self.unit_list(j).position);
% 将距离归一化到1-4
dis_dim_norm = self.norm(1,4,dist_dim,dist_dim_max);
dist_ij = (self.unit_list(i).position-self.unit_list(j).position);
new_pos = new_pos + self.get_s(dis_dim_norm).*dist_ij./distance;
end
new_pos = c^2*(self.range_max_list-self.range_min_list)/2.*new_pos+self.unit_list(best_id).position;
% 越界检查
new_pos = self.get_out_bound_value(new_pos);
new_value = self.cal_fitfunction(new_pos);
% 贪心一下
if new_value > self.unit_list(i).value
self.unit_list(i).value = new_value;
self.unit_list(i).position = new_pos;
end
end
end
% 获取每一维上距其他个体的最大距离
function dist_dim_max = get_dist_dim_max(self,i)
dist_dim_max = zeros(1,self.dim);
for j = 1:self.size
if i == j
continue
end
dist_dim = abs(self.unit_list(i).position-self.unit_list(j).position);
I = dist_dim>dist_dim_max;
dist_dim_max(I) = dist_dim(I);
end
end
% 获取距离其他个体的距离(欧式)
function distance = get_distance(self,i,j)
distance = sqrt(sum((self.unit_list(i).position - self.unit_list(j).position).^2));
end
% 归一化,将值归一化到[min,max]区间内
function result = norm(self,min,max,value,value_max)
result = min + (max-min).*value./value_max;
end
% 变量c
function c = get_c(self,iter)
c_max = 1;
c_min = 0.00001;
c = c_max-iter*(c_max-c_min)/self.iter_max;
end
% 函数s
function s = get_s(self,x)
f = 0.5;
l = 1.5;
s = f*exp(-x/l) - exp(-x);
end
% 获取当前最优个体的id
function best_id=get_best_id(self)
% 求最大值则降序排列
[value,index] = sort([self.unit_list.value],'descend');
best_id = index(1);
end
end
end
文件名:..\optimization algorithm\algorithm_grasshopper\GOA_Impl.m
算法实现,继承于Base,图方便也可不写,直接用GOA_Base,这里为了命名一致。
% 蝗虫算法实现
classdef GOA_Impl < GOA_Base
% 外部可调用的方法
methods
function self = GOA_Impl(dim,size,iter_max,range_min_list,range_max_list)
% 调用父类构造函数设置参数
self@GOA_Base(dim,size,iter_max,range_min_list,range_max_list);
end
end
end
2.测试
测试F1
文件名:..\optimization algorithm\algorithm_grasshopper\Test.m
%% 清理之前的数据
% 清除所有数据
clear all;
% 清除窗口输出
clc;
%% 添加目录
% 将上级目录中的frame文件夹加入路径
addpath('../frame')
%% 选择测试函数
Function_name='F1';
%[最小值,最大值,维度,测试函数]
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
%% 算法实例
% 种群数量
size = 50;
% 最大迭代次数
iter_max = 1000;
% 取值范围上界
range_max_list = ones(1,dim).*ub;
% 取值范围下界
range_min_list = ones(1,dim).*lb;
% 实例化蝗虫算法类
base = GOA_Impl(dim,size,iter_max,range_min_list,range_max_list);
base.is_cal_max = false;
% 确定适应度函数
base.fitfunction = fobj;
% 运行
base.run();
disp(base.cal_fit_num);
%% 绘制图像
figure('Position',[500 500 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
%Draw objective space
subplot(1,2,2);
% 绘制曲线,由于算法是求最大值,适应度函数为求最小值,故乘了-1,此时去掉-1
semilogy((base.value_best_history),'Color','r')
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');
% 将坐标轴调整为紧凑型
axis tight
% 添加网格
grid on
% 四边都显示刻度
box off
legend(base.name)
display(['The best solution obtained by ',base.name ,' is ', num2str(base.value_best)]);
display(['The best optimal value of the objective funciton found by ',base.name ,' is ', num2str(base.position_best)]);