在向量场中的积分
形式上为
∫ L X d x + Y d y = ∫ L ω = ∫ L ( X ( t ) x ′ ( t ) + Y ( t ) y ′ ( t ) ) d t \int _LXdx+Ydy=\int _L \omega =\int _L (X(t)x'(t)+Y(t)y'(t))dt ∫LXdx+Ydy=∫Lω=∫L(X(t)x′(t)+Y(t)y′(t))dt
梯度向量场上积分与路径无关
∫ L ( A ) ( B ) d ω = ω ( B ) − ω ( A ) \int _{L(A)}^{(B)} d\omega =\omega(B)-\omega (A) ∫L(A)(B)dω=ω(B)−ω(A)
Green公式
∫ ∂ D X d x + Y d y = ∬ D ( ∂ Y ∂ x − ∂ X ∂ y ) d x d y \int _{\partial D}Xdx+Ydy=\iint _D(\frac{\partial Y}{\partial x}-\frac{\partial X}{\partial y})dxdy ∫∂DXdx+Ydy=∬D(∂x∂Y−∂y∂X)dxdy
d ( X d x + Y d y ) = ( ∂ X ∂ x d x + ∂ X ∂ y d y ) ∧ d x + ( ∂ Y ∂ x d x + ∂ Y ∂ y d y ) ∧ d y = ( ∂ Y ∂ x − ∂ X ∂ y ) d x ∧ d y d(Xdx+Ydy)=(\frac{\partial X}{\partial x}dx+\frac{\partial X}{\partial y}dy) \wedge dx+ (\frac{\partial Y}{\partial x}dx+\frac{\partial Y}{\partial y}dy) \wedge dy\\ =(\frac{\partial Y}{\partial x}-\frac{\partial X}{\partial y})dx\wedge dy d(Xdx+Ydy)=(∂x∂Xdx+∂y∂Xdy)∧dx+(∂x∂Ydx+∂y∂Ydy)∧dy=(∂x∂Y−∂y∂X)dx∧dy
∧ \wedge ∧为楔积(外积),满足反对称性 d x ∧ d y = − d y ∧ d x dx \wedge dy =-dy \wedge dx dx∧dy=−dy∧dx,因此 d x ∧ d x = d y ∧ d y = 0 dx\wedge dx=dy \wedge dy =0 dx∧dx=dy∧dy=0
计算方法
在三维空间中的向量场上的积分
∬ S X d y ∧ d z + Y d z ∧ d x + Z d x ∧ d y \iint_SXdy\wedge dz+Ydz\wedge dx+Zdx\wedge dy ∬SXdy∧dz+Ydz∧dx+Zdx∧dy
计算方法
∬ S + f d x ∧ d y = ± ∬ D x y f d x d y \iint _{S^+}f dx\wedge dy=\pm\iint _{D_{xy}}fdxdy ∬S+fdx∧dy=±∬Dxyfdxdy
d x ∧ d y = D ( x , y ) D ( u , v ) d u ∧ d v ∬ S X d y ∧ d z + Y d z ∧ d x + Z d x ∧ d y = ∬ S ( X D ( y , z ) D ( u , v ) + Y D ( z , x ) D ( u , v ) + Z D ( x , y ) D ( u , v ) ) d u ∧ d v = ± ∬ D u v ( X D ( y , z ) D ( u , v ) + Y D ( z , x ) D ( u , v ) + Z D ( x , y ) D ( u , v ) ) d u d v dx \wedge dy = \frac{D(x,y)}{D(u,v)}du\wedge dv\\ \iint_SXdy\wedge dz+Ydz\wedge dx+Zdx\wedge dy=\iint _S(X\frac{D(y,z)}{D(u,v)}+Y\frac{D(z,x)}{D(u,v)}+Z\frac{D(x,y)}{D(u,v)})du\wedge dv\\ = \pm \iint _{D_{uv}}(X\frac{D(y,z)}{D(u,v)}+Y\frac{D(z,x)}{D(u,v)}+Z\frac{D(x,y)}{D(u,v)})dudv dx∧dy=D(u,v)D(x,y)du∧dv∬SXdy∧dz+Ydz∧dx+Zdx∧dy=∬S(XD(u,v)D(y,z)+YD(u,v)D(z,x)+ZD(u,v)D(x,y))du∧dv=±∬Duv(XD(u,v)D(y,z)+YD(u,v)D(z,x)+ZD(u,v)D(x,y))dudv
夹角的判断:可以通过 ( x , y , z ) (x,y,z) (x,y,z)分别对 u , v u,v u,v求偏导得到 d u , d v du,dv du,dv在曲面上的向量,从而叉积计算法向量。或者直接看出来。
特殊的可以将 z = z ( x , y ) z=z(x,y) z=z(x,y)代入得到 d z = ∂ z ∂ x d x + ∂ z ∂ y d y dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy dz=∂x∂zdx+∂y∂zdy,将其化简为 ∬ S f d x ∧ d y \iint _S fdx\wedge dy ∬Sfdx∧dy
Gauss公式
Green公式 通量-散度 在高维空间中的扩展
有界闭区域 Ω ⊂ R m \Omega\sub \R ^m Ω⊂Rm的边界 ∂ Ω \partial \Omega ∂Ω是一个 C 1 C^1 C1正则曲面,则对 Ω \Omega Ω上任意向量场 ( X , Y , Z ) (X,Y,Z) (X,Y,Z)都有
∬ ∂ Ω , 朝 外 X d y ∧ d z + Y d z ∧ d x + Z d x ∧ d y = ∭ Ω ( ∂ X ∂ x + ∂ Y ∂ y + ∂ Z ∂ z ) d x d y d z \iint _{\partial \Omega,朝外}Xdy\wedge dz+Ydz\wedge dx+Zdx\wedge dy=\iiint_\Omega (\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z})dxdydz ∬∂Ω,朝外Xdy∧dz+Ydz∧dx+Zdx∧dy=∭Ω(∂x∂X+∂y∂Y+∂z∂Z)dxdydz
如果 ∂ Ω \partial \Omega ∂Ω的单位法向量朝区域内,需要在重积分的基础上乘上负号
同Green公式,同样是对 X d y ∧ d z + Y d z ∧ d x + Z d x ∧ d y Xdy\wedge dz+Ydz\wedge dx+Zdx\wedge dy Xdy∧dz+Ydz∧dx+Zdx∧dy求全微分
Stokes公式
Green公式 环量-旋度 在高维空间中的扩展
Σ \Sigma Σ为 R 3 \R ^3 R3中的二维有向曲面, ∂ Σ \partial \Sigma ∂Σ是闭曲线,沿着 Σ \Sigma Σ边界自然正向(即 Σ \Sigma Σ在左侧,曲线法向量在右侧,曲面法方向在上)
∫ ∂ Σ X d x + Y d y + Z d z = ∬ Σ ( ∂ Z ∂ y − ∂ Y ∂ z ) d y ∧ d z + ( ∂ X ∂ z − ∂ Z ∂ x ) d z ∧ d x + ( ∂ Y ∂ x − ∂ X ∂ y ) d x ∧ d y \int _{\partial \Sigma} Xdx+Ydy+Zdz =\iint _\Sigma (\frac{\partial Z }{\partial y}-\frac{\partial Y}{\partial z})dy\wedge dz +(\frac{\partial X}{\partial z}-\frac{\partial Z}{\partial x})dz\wedge dx+(\frac{\partial Y}{\partial x}-\frac{\partial X}{\partial y})dx\wedge dy ∫∂ΣXdx+Ydy+Zdz=∬Σ(∂y∂Z−∂z∂Y)dy∧dz+(∂z∂X−∂x∂Z)dz∧dx+(∂x∂Y−∂y∂X)dx∧dy
计算方法
设 F = ( X , Y ) F=(X,Y) F=(X,Y)
∫ L X d x + Y d y = ∫ L ⟨ F , T ⟩ d l \int _L Xdx+Ydy=\int _L\left \langle F,T\right \rangle dl ∫LXdx+Ydy=∫L⟨F,T⟩dl
∫ L X d y − Y d x = ∫ L ⟨ F , n ⟩ d l \int _L Xdy-Ydx=\int_L\left \langle F,n\right \rangle dl ∫LXdy−Ydx=∫L⟨F,n⟩dl
Green公式
∫ L ⟨ F , d l ⟩ = ∬ D r o t F d σ = ∬ D ( ∂ Y ∂ x − ∂ X ∂ y ) d x d y \int _L \left \langle F,dl\right \rangle =\iint _D rot\ Fd\sigma=\iint _D(\frac{\partial Y}{\partial x}-\frac{\partial X}{\partial y})dxdy ∫L⟨F,dl⟩=∬Drot Fdσ=∬D(∂x∂Y−∂y∂X)dxdy
∬ L ⟨ F , n ⟩ d l = ∬ d i v F d σ = ∬ D ( ∂ X ∂ x + ∂ Y ∂ y ) d x d y \iint _L\left \langle F,n\right \rangle dl =\iint div\ F d\sigma=\iint _D(\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y})dxdy ∬L⟨F,n⟩dl=∬div Fdσ=∬D(∂x∂X+∂y∂Y)dxdy
设 F = ( X , Y , Z ) F=(X,Y,Z) F=(X,Y,Z)
∬ S X d y ∧ d z + Y d z ∧ d x + Z d x ∧ d y = ∬ S ⟨ F , n ⟩ d σ \iint_SXdy\wedge dz+Ydz\wedge dx+Zdx\wedge dy=\iint _S \langle F,n\rangle d\sigma ∬SXdy∧dz+Ydz∧dx+Zdx∧dy=∬S⟨F,n⟩dσ
任意维的第二型曲面积分
设 v = ( V 1 , V 2 , . . . , V m ) v=(V_1,V_2,...,V_m) v=(V1,V2,...,Vm)
∬ S ⟨ v , n ⟩ d σ = ∬ U ⟨ v , ∣ e 1 ∂ x 1 ∂ u 1 . . . ∂ x 1 ∂ u m e 2 ∂ x 2 ∂ u 1 . . . ∂ x 2 ∂ u 2 ⋮ ⋮ ⋱ ⋮ e m ∂ x m ∂ u 1 . . . ∂ x m ∂ u m ∣ ⟩ d u 1 d u 2 . . . d u m = ∬ U ∣ V 1 ∂ x 1 ∂ u 1 . . . ∂ x 1 ∂ u m V 2 ∂ x 2 ∂ u 1 . . . ∂ x 2 ∂ u 2 ⋮ ⋮ ⋱ ⋮ V m ∂ x m ∂ u 1 . . . ∂ x m ∂ u m ∣ d u 1 d u 2 . . . d u m = ∬ S ∑ k = 1 m ( − 1 ) k − 1 V k d x 1 ∧ . . . ∧ d x k ^ ∧ . . . ∧ d x m \iint _S \langle v,n\rangle d\sigma=\iint _U\langle v,\begin{vmatrix} e_1 & \frac{\partial x_1}{\partial u_1} & ...& \frac{\partial x_1}{\partial u_m}\\ e_2 & \frac{\partial x_2}{\partial u_1} & ...& \frac{\partial x_2}{\partial u_2} \\ \vdots & \vdots & \ddots & \vdots\\ e_m & \frac{\partial x_m}{\partial u_1} & ... & \frac{\partial x_m}{\partial u_m} \end{vmatrix} \rangle du_1du_2...du_m\\ = \iint _U\begin{vmatrix} V_1& \frac{\partial x_1}{\partial u_1} & ...& \frac{\partial x_1}{\partial u_m}\\ V_2 & \frac{\partial x_2}{\partial u_1} & ...& \frac{\partial x_2}{\partial u_2} \\ \vdots & \vdots & \ddots & \vdots\\ V_m & \frac{\partial x_m}{\partial u_1} & ... & \frac{\partial x_m}{\partial u_m} \end{vmatrix} du_1du_2...du_m\\ = \iint _S\sum _{k=1}^m(-1)^{k-1}V^kdx_1\wedge...\wedge \widehat{dx_k}\wedge...\wedge dx_m ∬S⟨v,n⟩dσ=∬U⟨v,∣∣∣∣∣∣∣∣∣e1e2⋮em∂u1∂x1∂u1∂x2⋮∂u1∂xm......⋱...∂um∂x1∂u2∂x2⋮∂um∂xm∣∣∣∣∣∣∣∣∣⟩du1du2...dum=∬U∣∣∣∣∣∣∣∣∣V1V2⋮Vm∂u1∂x1∂u1∂x2⋮∂u1∂xm......⋱...∂um∂x1∂u2∂x2⋮∂um∂xm∣∣∣∣∣∣∣∣∣du1du2...dum=∬Sk=1∑m(−1)k−1Vkdx1∧...∧dxk ∧...∧dxm
Gauss公式
∬ ∂ Ω , 朝 外 ⟨ F , n ⟩ d σ = ∭ Ω d i v F d μ = ∭ Ω ( ∂ X ∂ x + ∂ Y ∂ y + ∂ Z ∂ z ) d x d y d z \iint_{\partial \Omega,朝外}\langle F,n \rangle d\sigma=\iiint _\Omega div \ F d\mu =\iiint_\Omega (\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z})dxdydz ∬∂Ω,朝外⟨F,n⟩dσ=∭Ωdiv Fdμ=∭Ω(∂x∂X+∂y∂Y+∂z∂Z)dxdydz
Stokes公式
∫ ∂ Σ ⟨ F , d l ⟩ = ∬ Σ ⟨ r o t F , n ⟩ d σ = ∬ Σ ( ∂ Z ∂ y − ∂ Y ∂ z ) d y ∧ d z + ( ∂ X ∂ z − ∂ Z ∂ x ) d z ∧ d x + ( ∂ Y ∂ x − ∂ X ∂ y ) d x ∧ d y \int_{\partial \Sigma}\langle F,dl\rangle=\iint _\Sigma \langle rot \ F ,n\rangle d\sigma=\iint _\Sigma (\frac{\partial Z }{\partial y}-\frac{\partial Y}{\partial z})dy\wedge dz +(\frac{\partial X}{\partial z}-\frac{\partial Z}{\partial x})dz\wedge dx+(\frac{\partial Y}{\partial x}-\frac{\partial X}{\partial y})dx\wedge dy ∫∂Σ⟨F,dl⟩=∬Σ⟨rot F,n⟩dσ=∬Σ(∂y∂Z−∂z∂Y)dy∧dz+(∂z∂X−∂x∂Z)dz∧dx+(∂x∂Y−∂y∂X)dx∧dy
参数化表示
d x 1 ∧ d x 2 ∧ . . . ∧ d x m = D ( x 1 , x 2 , . . . , x m ) D ( u 1 , u 2 , . . . u m ) d u 1 ∧ d u 2 ∧ . . . ∧ d u m dx_1\wedge dx_2\wedge ...\wedge dx_m = \frac{D(x_1,x_2,...,x_m)}{D(u_1,u_2,...u_m)}du_1\wedge du_2\wedge...\wedge du_m dx1∧dx2∧...∧dxm=D(u1,u2,...um)D(x1,x2,...,xm)du1∧du2∧...∧dum
Green,Gauss,Stokes公式的统一形式
∫ ∂ Ω w = ∫ Ω d w \int _{\partial \Omega}w = \int _\Omega dw ∫∂Ωw=∫Ωdw
∂ Ω \partial \Omega ∂Ω为自然正向:曲线要求逆时针围绕曲面正法方向,曲面要求正法方向朝外,要求 Ω \Omega Ω内都有向量场
对于微分形式 w = X d x ∧ d y w=Xdx\wedge dy w=Xdx∧dy, d w = ( ∂ X ∂ x d x + ∂ X ∂ y d y + ∂ X ∂ z d z ) ∧ d x ∧ d y dw=(\frac{\partial X}{\partial x}dx+\frac{\partial X}{\partial y}dy+\frac{\partial X}{\partial z}dz)\wedge dx\wedge dy dw=(∂x∂Xdx+∂y∂Xdy+∂z∂Xdz)∧dx∧dy,只对系数求微分,再通过楔积化简
X ( x , y ) d x + Y ( x , y ) d y = 0 X(x,y)dx+Y(x,y)dy=0 X(x,y)dx+Y(x,y)dy=0
化简为 d f ( x , y ) = 0 df(x,y)=0 df(x,y)=0,解集即为 f ( x , y ) = C f(x,y)=C f(x,y)=C
求解过程
如果 ∂ X ∂ y − ∂ Y ∂ x = 0 \frac{\partial X}{\partial y}-\frac{\partial Y}{\partial x}=0 ∂y∂X−∂x∂Y=0,就可以写成全微分 d f df df
否则引入积分因子 μ ( x , y ) \mu(x,y) μ(x,y)使得 ∂ ( μ X ) ∂ y − ∂ ( μ Y ) ∂ x = 0 \frac{\partial (\mu X)}{\partial y}-\frac{\partial (\mu Y)}{\partial x}=0 ∂y∂(μX)−∂x∂(μY)=0
∂ μ ∂ y X + μ ( ∂ X ∂ y − ∂ Y ∂ x ) = 0 ∂ μ ∂ y ⋅ 1 μ = 1 X ( ∂ Y ∂ x − ∂ X ∂ y ) \frac{\partial \mu}{\partial y}X+\mu(\frac{\partial X}{\partial y}-\frac{\partial Y}{\partial x})=0\\ \frac{\partial \mu }{\partial y}\cdot \frac{1}{\mu}=\frac{1}{X}(\frac{\partial Y}{\partial x}-\frac{\partial X}{\partial y}) ∂y∂μX+μ(∂y∂X−∂x∂Y)=0∂y∂μ⋅μ1=X1(∂x∂Y−∂y∂X)
− x d x − y d y − z d z ( x 2 + y 2 + z 2 ) 2 3 = d ( 1 x 2 + y 2 + z 2 ) / / 重 力 势 能 x d x + y d y x 2 + y 2 = d ( ln x 2 + y 2 ) x d x + y d y x 2 + y 2 = d ( x 2 + y 2 ) x d x + y d y x + y = d ( ln ∣ x + y ∣ ) x d y − y d x x 2 = d ( y x ) \frac{-xdx-ydy-zdz}{(x^2+y^2+z^2)^{\frac{2}{3}}}=d(\frac{1}{\sqrt{x^2+y^2+z^2}})//重力势能\\ \frac{xdx+ydy}{x^2+y^2}=d(\ln \sqrt{x^2+y^2})\\ \frac{xdx+ydy}{\sqrt{x^2+y^2}}=d(\sqrt{x^2+y^2})\\ \frac{xdx+ydy}{x+y}=d(\ln|x+y|)\\ \frac{xdy-ydx}{x^2}=d(\frac{y}{x})\\ (x2+y2+z2)32−xdx−ydy−zdz=d(x2+y2+z21)//重力势能x2+y2xdx+ydy=d(lnx2+y2)x2+y2xdx+ydy=d(x2+y2)x+yxdx+ydy=d(ln∣x+y∣)x2xdy−ydx=d(xy)