- 题目 1127: C语言训练-尼科彻斯定理
星海燚燚
C语言刷题c语言
验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。输出典例:131313=2197=157+159+161+163+165+167+169+171+173+175+177+179+181#includeintmain(){intn,st;scanf("%d",&n);st=n*n-n+1;printf("%d*%d*%d=%d=%d",n,n,n,n*n*n,st);for(i
- 尼科彻斯定理c语言,尼科彻斯定理!
销号le
尼科彻斯定理c语言
该楼层疑似违规已被系统折叠隐藏此楼查看此楼#include"stdio.h"voidmain(){inti,j,k=0,l,n,m,sum,flag=1;printf("输入一个数:");scanf("%d",&n);m=n*n*n;i=m/2;if(i%2==0){i=i+1;}while(flag==l&&i>=1){sum=0;k=0;while(l){sum+=(i-2*k);k++;if
- 【华为机试真题JavaScript】尼科彻斯定理
forest_long
华为机试真题-JS动态规划javascriptpythonjava华为
目录题目描述输入描述输出描述参考示例参考代码机试介绍写在最后题目描述验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。例如:1^3=12^3=3+53^3=7+9+114^3=13+15+17+19输入一个正整数m(m≤100),将m的立方写成m个连续奇数之和的形式输出。数据范围:1≤m≤100进阶:时间复杂度:O(m),空间复杂度:O(1)输入描述输入一个int整数输出描述输
- c语言网 1127 尼科彻斯定理
Xzh0423
算法c++数据结构
原题题目描述验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。输入格式任一正整数输出格式该数的立方分解为一串连续奇数的和样例输入13样例输出13*13*13=2197=157+159+161+163+165+167+169+171+173+175+177+179+181#includeusingnamespacestd;intmain(){intm;cin>>m;intm_c
- java cap理论_架构设计之「 CAP 定理 」
Can Li
javacap理论
点击上方“Java知音”,选择“置顶公众号”技术文章第一时间送达!作者:奎哥来源:不止思考在计算机领域,如果是初入行就算了,如果是多年的老码农还不懂CAP定理,那就真的说不过去了。CAP可是每一名技术架构师都必须掌握的基础原则啊。现在只要是稍微大一点的互联网项目都是采用分布式结构了,一个系统可能有多个节点组成,每个节点都可能需要维护一份数据。那么如何维护各个节点之间的状态,如何保障各个节点之间数据
- 数论问题79一一研究成果
李扩继
数据分析深度学习学习方法算法数学建模
(豆包智能搜索一一李扩继)李扩继是一位在数学研究尤其是哥德巴赫猜想研究领域有一定成果的中学老师,以下是关于他的具体介绍:①研究经历:2006年承担咸阳市教研室的立项课题《角谷猜想的研究》,虽未完成角谷猜想的证明,但在意外灵感下开始对哥德巴赫猜想展开持续性研究工作。②发表论文:研究哥德巴赫猜想发表了多篇文章,如2008年的《哥德巴赫猜想的证明》、2010年的《哥德巴赫猜想的“1+1”证明》、2017
- 【架构设计】CAP定理、BASE理论
Bolon0708
Java分布式架构
目录一、CAP定理什么是CAP?Consisteny(一致性)Availability(可用性)Partitiontolerance(分区容错性)CAP怎么应用?CP架构AP架构CAP注意事项?二、BASE理论基本可用软状态最终一致性小结在计算机领域,如果是初入行就算了,如果是多年的老码农还不懂CAP定理,那就真的说不过去了。CAP可是每一名技术架构师都必须掌握的基础原则啊。现在只要是稍微大一点的
- 【算法学习之路】4.简单数论(2)
零零时
算法学习之路算法学习数据结构笔记经验分享
简单数论(2)前言二.快速幂1.什么是快速幂2.前置知识2.1进制转化2.2短除法2.3普通转换法3.快速幂3.1原理3.2代码4.拓展4.1模运算法则4.2题目前言我会将一些常用的算法以及对应的题单给写完,形成一套完整的算法体系,以及大量的各个难度的题目,目前算法也写了几篇,滑动窗口的题单正在更新,其他的也会陆陆续续的更新,希望大家点赞收藏我会尽快更新的!!!二.快速幂1.什么是快速幂快速幂是一
- 数论问题77一一3x+1问题
李扩继
深度学习学习方法算法数学建模数据分析
3X+1问题,也被称为考拉兹猜想、角谷猜想等,是数学领域一个著名的未解决问题,以下是关于它的介绍:问题表述对于任意一个正整数X,如果X是奇数,则将其变为3X+1;如果X是偶数,则将其变为X/2。不断重复这个过程,最终是否无论初始值X是多少,都会经过有限次变换后最终得到1。例如,取X=5,它是奇数,进行3X+1操作得到3×5+1=16;16是偶数,进行X/2操作得到16÷2=8,接着8÷2=4,4÷
- 【算法】经典博弈论问题——斐波那契博弈 + Zeckendorf 定理 python
查理零世
算法python数据结构
目录斐波那契博弈(FibonacciNim)齐肯多夫(Zeckendorf)定理示例分析实战演练斐波那契博弈(FibonacciNim)先说结论:当初始石子数目n是斐波那契数时,先手必败;否则,先手有策略获胜。证明概要:当n=2时,先手只能取1颗石子,后手直接取剩下的1颗石子获胜,因此先手必败。假设对于所有小于等于某个斐波那契数f[k]的情况,结论都成立。归纳:对于f[k+1]=f[k]+f[k-
- 数论问题76一一容斥原理
李扩继
深度学习数学建模大数据学习方法算法
容斥原理是一种计数方法,用于计算多个集合的并集中元素的个数,以避免重复计算。以下是其基本内容及相关公式:两个集合的容斥原理若有集合A和集合B,那么A与B的并集中元素的个数等于A集合元素个数加上B集合元素个数,再减去A与B交集的元素个数,即|AUB|=|A|+|B|-|A∧B|。例如,一个班级中喜欢数学的有30人,喜欢语文的有25人,既喜欢数学又喜欢语文的有10人。那么喜欢数学或语文的人数为30+2
- 分布式组件底层逻辑是什么?
Jtti
分布式
分布式组件的底层逻辑围绕如何在多节点系统中实现协调、通信和可靠性展开,其核心目标是通过协作提供高可用、高性能和容错能力的服务。以下是分布式组件的核心底层逻辑:1.核心概念与原理1.1数据一致性分布式系统中,多个节点可能会同时处理数据,如何保持一致性是核心问题。CAP定理:C(Consistency):所有节点对同一数据的视图一致。A(Availability):每个请求都能得到响应(不保证最新数据
- DP优化专题
pytKonnyaku
算法动态规划
文章目录倍增优化DP[NOIP2012提高组]开车旅行题目描述输入格式输出格式数据结构优化DP清理班次2赤壁之战估算单调队列优化DP[SCOI2010]股票交易题目描述裁剪序列单调队列优化多重背包斜率优化DPⅠ状态转移方程Ⅱ决策点关系Ⅲ凸壳Ⅳ维护答案Ⅴ特殊性Ⅵ模板CodeⅦ注意事项K匿名序列四边形不等式优化DP定义:定理:一维线性DP的四边形不等式优化决策单调性定理二维四边形不等式优化DP决策单调
- 【数论】Acwing质数与约数
九年义务漏网鲨鱼
算法python算法数论质数约数
质数质数的判定(试除法)除了开方的数,其他因数都是成对出现的defis_prime(x):if(x<2)returnFalseforiinrange(2,int(x/i)+1):if(x%iW==0):returnFalsereturnTrue分解质因数defdivide(x):foriinrange(2,int(x/i)+1):if(x%i==0):s=0while(x%i==0):x//=is
- 数论(三)——约数(约数个数,约数和,公约数)
DearLife丶
#数学知识算法gcd约数欧几里德算法
目录试除法求约数求约数个数约数之和欧几里得算法试除法求约数试除法求一个数的所有约数,思路与判断质数的思路一样,优化的方法也是一样的,这里就不再赘述,没有看过我之前关于质数的博客可以点这里。从小到大枚举所有约数,但是我们只需要枚举每一对儿中较小的一个就可以了。时间复杂度:O(sqrt(n))vectorget_divisors(intn){vectorres;//vector数组存储一个数的所有约数
- 嵌入式工程师必学(99):直流电路定理
芯片-嵌入式
嵌入式硬件
线性度属性LinearityProperty线性是描述因果之间线性关系的元素的属性。它是均匀性和可加性特性的组合。齐次性属性要求,如果输入(激励)乘以一个常数,则输出(响应)乘以相同的常数。例如,对于电阻,欧姆定律将输入i与输出v相关联:v=iR。如果i增加一个常数k,则v相应地增加k;那是可加性属性要求对输入之和的响应是对单独应用的每个输入的响应之和。因此,对于电阻,如果V1=i1R
- Gumble Distribution耿贝尔分布
MapC
分析模型和算法耿贝尔分布GumbleGumbledistribution
耿贝尔分布是样本最值的分布摘选自一些网页的资料度娘百科:耿贝尔分布是根据极值定理导出,由费雪(R·A·Fisher)和蒂培特(L·H·C·Tippe-tt)于1928年发现各个样本的最大值分布将趋于三种极限形式种的一种,具体由型式参数K确定,当K=0的时候也就是耿贝尔分布,水文方面主要用第I型渐近极值分布,是耿贝尔在1941年将此分布应用于洪水频率分析工作,所以也称Fisher一Tippe优工型分
- 数学基础 -- 三明治定理(夹逼定理)
sz66cm
算法数学
三明治定理三明治定理(SandwichTheorem)又称夹逼定理或夹逼准则,是数学分析中的一个重要定理。它描述了当三个函数在某一区间上满足特定关系时,中间函数的极限可以通过两个外侧函数的极限确定。这个定理广泛应用于极限和连续性的证明中。具体来说,设aaa是一个实数或无穷大,假设在aaa的某个去心邻域上,三个函数f(x)f(x)f(x)、g(x)g(x)g(x)和h(x)h(x)h(x)满足以下关
- 数学基础 -- 洛必达法则
sz66cm
机器学习人工智能高等数学微积分
洛必达法则洛必达法则(L’Hôpital’sRule)是微积分中的一个重要定理,用于求解某些未定形式极限的问题。其基本思想是通过求导来简化极限计算。洛必达法则主要用于处理以下两种未定形式的极限:00\frac{0}{0}00和∞∞\frac{\infty}{\infty}∞∞。洛必达法则的公式假设函数f(x)f(x)f(x)和g(x)g(x)g(x)在某一开区间内可导,且在该区间内g′(x)≠0g
- 矩阵可逆的充要条件及证明
吴天德少侠
线性代数
1.定理设AAA为nnn阶矩阵,则如下命题等价AAA是可逆的AX=0AX=0AX=0只有0解AAA与III行等价AAA可表示为有限个初等矩阵的乘积2.证明2.1证明:1→21\rightarrow21→2已知AAA可逆,证明AX=0AX=0AX=0只有0解。证明:∵A\because\A∵A可逆∴A−1\therefore\A^-1∴A−1存在⇒A−1AX=A−10\Rightarrow\A^{-
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 数论问题65一一整数的乘法分拆
李扩继
数据分析深度学习学习方法数学建模算法
整数的乘法分拆实质就是整数的乘法因子数分解。如18=2x9=6x3=2x3x3。整数的乘法分拆与加法分拆有密切的关联,最终用加法分拆来表示。如,a为质数,a^n的乘法分拆就是指数n的加法分拆。整数的乘法分拆相当复杂,如果弄不懂乘法分拆的实质,那么,进行乘法分拆会相当困难。首先,对于一个正整数n要进行质因数幂分解,如18=2x3^2。其次,设定抽屉,然后给抽屉中放置元素,分类进行。用f(n)表示对正
- 微积分公式大全
.NET跨平台
书籍微积分
在微积分的进阶学习中,会涉及许多更加复杂和深奥的公式与定理。以下是一些常见的复杂公式和定理,涵盖了多变量微积分、无穷级数、积分变换、极限等方面:1.多变量微积分偏导数和梯度偏导数:∂∂xf(x,y,z)\frac{\partial}{\partialx}f(x,y,z)∂x∂f(x,y,z)是函数f(x,y,z)f(x,y,z)f(x,y,z)对变量xxx的偏导数。梯度(Gradient):∇f=
- 用Python打造精彩动画与视频,6.3 项目案例分析
蝴蝶江湖
python开发语言
6.3项目案例分析在这一节中,我们将通过具体的项目案例,深入探索Manim的潜力,并展示如何使用Manim创建复杂且富有表现力的动画。这些案例将涵盖数学、物理以及其他科学领域,帮助您更好地理解和应用Manim。6.3.1案例一:展示数学定理frommanimimport*classPythagoreanTheorem(Scene):defconstruct(self):#创建一个直角三角形tria
- 线性代数 第七讲 二次型_标准型_规范型_坐标变换_合同_正定二次型详细讲解_重难点题型总结
二叉树果实
线性代数线性代数
文章目录1.二次型1.1二次型、标准型、规范型、正负惯性指数、二次型的秩1.2坐标变换1.3合同1.4正交变换化为标准型1.5可逆线性变换和正交变换1.6二次型化标准形,二次型化规范形的联系思考1.8两个二次型联系的思考1.9对于配方法问题的深入思考2.二次型的主要定理3.正定二次型与正定矩阵4.重难点题型总结4.1配方法将二次型化为标准型4.2正交变换法将二次型化为标准型4.3规范型确定取值范围
- 想转行到人工智能领域,我该学什么,怎么学?
张登杰踩
人工智能python
转行到人工智能(AI)领域需要系统的学习和实践,以下是详细的路径建议,涵盖基础知识、技能学习、项目实践和求职准备:一、明确目标和领域方向人工智能领域广泛,建议先了解细分方向(如机器学习、深度学习、计算机视觉、自然语言处理、强化学习等),结合兴趣和职业规划选择切入点。二、构建基础知识1.数学基础线性代数:矩阵运算、特征值、向量空间。微积分:导数、梯度、优化理论。概率与统计:贝叶斯定理、分布、假设检验
- 认知的形式化:数学是建立在明确的公设定理体系之上的高级语言形态
AI架构设计之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
认知形式化,数学语言,公设理体系,高级语言,人工智能,逻辑推理,算法设计1.背景介绍在当今数据爆炸和人工智能飞速发展的时代,如何有效地理解和处理信息成为了一个至关重要的课题。认知科学、人工智能和计算机科学等领域都在积极探索如何将人类的认知能力形式化,并将其转化为可计算的模型。数学作为一种高度抽象和形式化的语言,在认知科学和人工智能领域扮演着至关重要的角色。它为我们提供了描述和推理世界的逻辑框架,并
- lisp不是函授型语言_LISP语言
sunlee0520
lisp不是函授型语言
[拼音]:LISPyuyan[外文]:LISP为非数值符号运算而设计的表处理语言。LISP是英文LISTPROCESSING(表处理)的缩写。LISP语言是1960年J.麦卡锡在递归函数论基础上首先设计出来的。LISP语言的形式化程度高,表达力强,适合于描述各种知识和编写问题求解的程序,因此一直是用来研究人工智能的一种基本语言。自然语言中词可以认为是能单独用来构成句子的最小单元,由词可以构成词组,
- 蓝桥杯Python组最后几天冲刺———吐血总结,练题总结,很管用我学会了
晚风时亦鹿
学习笔记Python算法笔记python
一、重要知识要点1、穷举法2、枚举法3、动态规划4、回溯法5、图论6、深度优先搜索(DFS)7、广度优先搜索(BFS)8、二叉树9、递归10、分治法、矩阵法11、排列组合12、素数、质数、水仙花数13、欧几里得定理gcd14、求最大公约数、最小公倍数15、海伦公式(求三角形面积)16、博弈论17、贪心18、二分查找法19、hash表20、日期计算21、矩形快速幂22、树形DP23、最短路径24、最
- AI系统架构原理与代码实战案例讲解
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI系统架构原理与代码实战案例讲解1.背景介绍1.1人工智能的发展历程1.1.1人工智能的起源与早期发展人工智能的概念可以追溯到上世纪50年代,图灵测试的提出标志着人工智能作为一门学科的诞生。早期的研究主要集中在符号推理、专家系统等领域,取得了一些突破,例如机器定理证明、西洋跳棋程序等。1.1.2人工智能的黄金时期上世纪80年代,随着专家系统的兴起,人工智能进入了一个黄金时期。专家系统通过模拟人类
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache