一文读懂「Prompt Engineering」提示词工程

在了解提示过程之前,先了解一下什么是提示prompt,见最后附录部分

一、什么是Prompt Engingering?

提示工程(Prompt Engingering),也被称为上下文提示(In-Context Prompting),指的是通过结构化文本等方式来完善提示词,引导LLM输出我们期望的结果。通过提示词工程可以在不更新模型权重的情况下,让LLM完成不同类型的任务。其主要依赖于经验,而且提示词工程方法的效果在不同的模型中可能会有很大的差异,因此需要大量的实验和探索。

提示工程旨在获取这些提示并帮助模型在其输出中实现高准确度和相关性,掌握提示工程相关技能将有助于用户更好地了解大型语言模型的能力和局限性。特别地, 矢量数据库、agent和prompt pipeline已经被用作在对话中,作为向 LLM 提供相关上下文数据的途径。

提示工程涉及选择、编写和组织提示,以便获得所需的输出,主要包括以下方面:

  1. Prompt 格式:确定 prompt 的结构和格式,例如,问题形式、描述形式、关键词形式等。

  2. Prompt 内容:选择合适的词语、短语或问题,以确保模型理解用户的意图。

  3. Prompt 上下文:考虑前文或上下文信息,以确保模型的回应与先前的对话或情境相关。

  4. Prompt 编写技巧:使用清晰、简洁和明了的语言编写 prompt,以准确传达用户的需求。

  5. Prompt 优化:

你可能感兴趣的:(AI:一文读懂「X」系列,prompt,人工智能,提示词工程,transformer)