动态规划(整数拆分、不同的二叉搜索树)

343. 整数拆分

给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。

示例 1:

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。
示例 2:

输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
说明: 你可以假设 n 不小于 2 且不大于 58。

思路
看到这道题目,都会想拆成两个呢,还是三个呢,还是四个…

我们来看一下如何使用动规来解决。

#动态规划
动规五部曲,分析如下:

确定dp数组(dp table)以及下标的含义
dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。

dp[i]的定义将贯彻整个解题过程,下面哪一步想不懂了,就想想dp[i]究竟表示的是啥!

确定递推公式
可以想 dp[i]最大乘积是怎么得到的呢?

其实可以从1遍历j,然后有两种渠道得到dp[i].

一个是j * (i - j) 直接相乘。

一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。

那有同学问了,j怎么就不拆分呢?

j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。

如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。

所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

那么在取最大值的时候,为什么还要比较dp[i]呢?

因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。

dp的初始化
不少同学应该疑惑,dp[0] dp[1]应该初始化多少呢?

有的题解里会给出dp[0] = 1,dp[1] = 1的初始化,但解释比较牵强,主要还是因为这么初始化可以把题目过了。

严格从dp[i]的定义来说,dp[0] dp[1] 就不应该初始化,也就是没有意义的数值。

拆分0和拆分1的最大乘积是多少?

这是无解的。

这里我只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1,这个没有任何异议!

确定遍历顺序
确定遍历顺序,先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。

所以遍历顺序为:

for (int i = 3; i <= n ; i++) {
    for (int j = 1; j < i - 1; j++) {
        dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
    }
}

注意 枚举j的时候,是从1开始的。从0开始的话,那么让拆分一个数拆个0,求最大乘积就没有意义了。

j的结束条件是 j < i - 1 ,其实 j < i 也是可以的,不过可以节省一步,例如让j = i - 1,的话,其实在 j = 1的时候,这一步就已经拆出来了,重复计算,所以 j < i - 1

至于 i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。

更优化一步,可以这样:

for (int i = 3; i <= n ; i++) {
    for (int j = 1; j <= i / 2; j++) {
        dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
    }
}

因为拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的。

例如 6 拆成 3 * 3, 10 拆成 3 * 3 * 4。 100的话 也是拆成m个近似数组的子数 相乘才是最大的。

只不过我们不知道m究竟是多少而已,但可以明确的是m一定大于等于2,既然m大于等于2,也就是 最差也应该是拆成两个相同的 可能是最大值。

那么 j 遍历,只需要遍历到 n/2 就可以,后面就没有必要遍历了,一定不是最大值。

至于 “拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的” 这个我就不去做数学证明了,感兴趣的同学,可以自己证明。

举例推导dp数组
举例当n为10 的时候,dp数组里的数值,如下:
动态规划(整数拆分、不同的二叉搜索树)_第1张图片
动态规划(版本一)

class Solution:
         # 假设对正整数 i 拆分出的第一个正整数是 j(1 <= j < i),则有以下两种方案:
        # 1) 将 i 拆分成 j 和 i−j 的和,且 i−j 不再拆分成多个正整数,此时的乘积是 j * (i-j)
        # 2) 将 i 拆分成 j 和 i−j 的和,且 i−j 继续拆分成多个正整数,此时的乘积是 j * dp[i-j]
    def integerBreak(self, n):
        dp = [0] * (n + 1)   # 创建一个大小为n+1的数组来存储计算结果
        dp[2] = 1  # 初始化dp[2]为1,因为当n=2时,只有一个切割方式1+1=2,乘积为1
       
        # 从3开始计算,直到n
        for i in range(3, n + 1):
            # 遍历所有可能的切割点
            for j in range(1, i // 2 + 1):

                # 计算切割点j和剩余部分(i-j)的乘积,并与之前的结果进行比较取较大值
                
                dp[i] = max(dp[i], (i - j) * j, dp[i - j] * j)
        
        return dp[n]  # 返回最终的计算结果

动态规划(版本二)

class Solution:
    def integerBreak(self, n):
        if n <= 3:
            return 1 * (n - 1)  # 对于n小于等于3的情况,返回1 * (n - 1)

        dp = [0] * (n + 1)  # 创建一个大小为n+1的数组来存储最大乘积结果
        dp[1] = 1  # 当n等于1时,最大乘积为1
        dp[2] = 2  # 当n等于2时,最大乘积为2
        dp[3] = 3  # 当n等于3时,最大乘积为3

        # 从4开始计算,直到n
        for i in range(4, n + 1):
            # 遍历所有可能的切割点
            for j in range(1, i // 2 + 1):
                # 计算切割点j和剩余部分(i - j)的乘积,并与之前的结果进行比较取较大值
                dp[i] = max(dp[i], dp[i - j] * dp[j])

        return dp[n]  # 返回整数拆分的最大乘积结果

给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?

示例:
动态规划(整数拆分、不同的二叉搜索树)_第2张图片

了解了二叉搜索树之后,我们应该先举几个例子,画画图,看看有没有什么规律,如图:

动态规划(整数拆分、不同的二叉搜索树)_第3张图片
n为1的时候有一棵树,n为2有两棵树,这个是很直观的。

动态规划(整数拆分、不同的二叉搜索树)_第4张图片
来看看n为3的时候,有哪几种情况。

当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!

(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!

当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!

发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。

思考到这里,这道题目就有眉目了。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

如图所示:

动态规划(整数拆分、不同的二叉搜索树)_第5张图片
此时我们已经找到递推关系了,那么可以用动规五部曲再系统分析一遍。

确定dp数组(dp table)以及下标的含义
dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]。

也可以理解是i个不同元素节点组成的二叉搜索树的个数为dp[i] ,都是一样的。

以下分析如果想不清楚,就来回想一下dp[i]的定义

确定递推公式
在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

j相当于是头结点的元素,从1遍历到i为止。

所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量

dp数组如何初始化
初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。

那么dp[0]应该是多少呢?

从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树,这是可以说得通的。

从递归公式上来讲,dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] 中以j为头结点左子树节点数量为0,也需要dp[以j为头结点左子树节点数量] = 1, 否则乘法的结果就都变成0了。

所以初始化dp[0] = 1

确定遍历顺序
首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。

那么遍历i里面每一个数作为头结点的状态,用j来遍历。

代码如下:

for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i; j++) {
        dp[i] += dp[j - 1] * dp[i - j];
    }
}

举例推导dp数组
n为5时候的dp数组状态如图:

动态规划(整数拆分、不同的二叉搜索树)_第6张图片
当然如果自己画图举例的话,基本举例到n为3就可以了,n为4的时候,画图已经比较麻烦了。

我这里列到了n为5的情况,是为了方便大家 debug代码的时候,把dp数组打出来,看看哪里有问题。

综上分析完毕,C++代码如下:

class Solution {
public:
    int numTrees(int n) {
        vector<int> dp(n + 1);
        dp[0] = 1;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        return dp[n];
    }
};

Python

class Solution:
    def numTrees(self, n: int) -> int:
        dp = [0] * (n + 1)  # 创建一个长度为n+1的数组,初始化为0
        dp[0] = 1  # 当n为0时,只有一种情况,即空树,所以dp[0] = 1
        for i in range(1, n + 1):  # 遍历从1到n的每个数字
            for j in range(1, i + 1):  # 对于每个数字i,计算以i为根节点的二叉搜索树的数量
                dp[i] += dp[j - 1] * dp[i - j]  # 利用动态规划的思想,累加左子树和右子树的组合数量
        return dp[n]  # 返回以1到n为节点的二叉搜索树的总数量

你可能感兴趣的:(动态规划,leetcode,动态规划,算法,leetcode)