C++力扣题目110--平衡二叉树

给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:

一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。

示例 1:

C++力扣题目110--平衡二叉树_第1张图片

输入:root = [3,9,20,null,null,15,7]
输出:true

示例 2:

C++力扣题目110--平衡二叉树_第2张图片

输入:root = [1,2,2,3,3,null,null,4,4]
输出:false

示例 3:

输入:root = []
输出:true

题外话

咋眼一看这道题目和104.二叉树的最大深度 (opens new window)很像,其实有很大区别。

这里强调一波概念:

  • 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
  • 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。

但leetcode中强调的深度和高度很明显是按照节点来计算的,如图:

C++力扣题目110--平衡二叉树_第3张图片

关于根节点的深度究竟是1 还是 0,不同的地方有不一样的标准,leetcode的题目中都是以节点为一度,即根节点深度是1。但维基百科上定义用边为一度,即根节点的深度是0,我们暂时以leetcode为准(毕竟要在这上面刷题)。

因为求深度可以从上到下去查 所以需要前序遍历(中左右),而高度只能从下到上去查,所以只能后序遍历(左右中)

有的同学一定疑惑,为什么104.二叉树的最大深度 (opens new window)中求的是二叉树的最大深度,也用的是后序遍历。

那是因为代码的逻辑其实是求的根节点的高度,而根节点的高度就是这棵树的最大深度,所以才可以使用后序遍历。

在104.二叉树的最大深度 (opens new window)中,如果真正求取二叉树的最大深度,代码应该写成如下:(前序遍历)

class Solution {
public:
    int result;
    void getDepth(TreeNode* node, int depth) {
        result = depth > result ? depth : result; // 中

        if (node->left == NULL && node->right == NULL) return ;

        if (node->left) { // 左
            depth++;    // 深度+1
            getDepth(node->left, depth);
            depth--;    // 回溯,深度-1
        }
        if (node->right) { // 右
            depth++;    // 深度+1
            getDepth(node->right, depth);
            depth--;    // 回溯,深度-1
        }
        return ;
    }
    int maxDepth(TreeNode* root) {
        result = 0;
        if (root == NULL) return result;
        getDepth(root, 1);
        return result;
    }
};


 

可以看出使用了前序(中左右)的遍历顺序,这才是真正求深度的逻辑!

注意以上代码是为了把细节体现出来,简化一下代码如下:

class Solution {
public:
    int result;
    void getDepth(TreeNode* node, int depth) {
        result = depth > result ? depth : result; // 中
        if (node->left == NULL && node->right == NULL) return ;
        if (node->left) { // 左
            getDepth(node->left, depth + 1);
        }
        if (node->right) { // 右
            getDepth(node->right, depth + 1);
        }
        return ;
    }
    int maxDepth(TreeNode* root) {
        result = 0;
        if (root == 0) return result;
        getDepth(root, 1);
        return result;
    }
};

#本题思路

#递归

此时大家应该明白了既然要求比较高度,必然是要后序遍历。

递归三步曲分析:

  1. 明确递归函数的参数和返回值

参数:当前传入节点。 返回值:以当前传入节点为根节点的树的高度。

那么如何标记左右子树是否差值大于1呢?

如果当前传入节点为根节点的二叉树已经不是二叉平衡树了,还返回高度的话就没有意义了。

所以如果已经不是二叉平衡树了,可以返回-1 来标记已经不符合平衡树的规则了。

代码如下:

// -1 表示已经不是平衡二叉树了,否则返回值是以该节点为根节点树的高度
int getHeight(TreeNode* node)


 

  1. 明确终止条件

递归的过程中依然是遇到空节点了为终止,返回0,表示当前节点为根节点的树高度为0

代码如下:

if (node == NULL) {
    return 0;
}

  1. 明确单层递归的逻辑

如何判断以当前传入节点为根节点的二叉树是否是平衡二叉树呢?当然是其左子树高度和其右子树高度的差值。

分别求出其左右子树的高度,然后如果差值小于等于1,则返回当前二叉树的高度,否则返回-1,表示已经不是二叉平衡树了。

代码如下:

int leftHeight = getHeight(node->left); // 左
if (leftHeight == -1) return -1;
int rightHeight = getHeight(node->right); // 右
if (rightHeight == -1) return -1;

int result;
if (abs(leftHeight - rightHeight) > 1) {  // 中
    result = -1;
} else {
    result = 1 + max(leftHeight, rightHeight); // 以当前节点为根节点的树的最大高度
}

return result;

代码精简之后如下:

int leftHeight = getHeight(node->left);
if (leftHeight == -1) return -1;
int rightHeight = getHeight(node->right);
if (rightHeight == -1) return -1;
return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);

此时递归的函数就已经写出来了,这个递归的函数传入节点指针,返回以该节点为根节点的二叉树的高度,如果不是二叉平衡树,则返回-1。

getHeight整体代码如下:

int getHeight(TreeNode* node) {
    if (node == NULL) {
        return 0;
    }
    int leftHeight = getHeight(node->left);
    if (leftHeight == -1) return -1;
    int rightHeight = getHeight(node->right);
    if (rightHeight == -1) return -1;
    return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);
}

最后本题整体递归代码如下:

class Solution {
public:
    // 返回以该节点为根节点的二叉树的高度,如果不是平衡二叉树了则返回-1
    int getHeight(TreeNode* node) {
        if (node == NULL) {
            return 0;
        }
        int leftHeight = getHeight(node->left);
        if (leftHeight == -1) return -1;
        int rightHeight = getHeight(node->right);
        if (rightHeight == -1) return -1;
        return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);
    }
    bool isBalanced(TreeNode* root) {
        return getHeight(root) == -1 ? false : true;
    }
};

#迭代

在104.二叉树的最大深度 (opens new window)中我们可以使用层序遍历来求深度,但是就不能直接用层序遍历来求高度了,这就体现出求高度和求深度的不同。

本题的迭代方式可以先定义一个函数,专门用来求高度。

这个函数通过栈模拟的后序遍历找每一个节点的高度(其实是通过求传入节点为根节点的最大深度来求的高度)

代码如下:

// cur节点的最大深度,就是cur的高度
int getDepth(TreeNode* cur) {
    stack st;
    if (cur != NULL) st.push(cur);
    int depth = 0; // 记录深度
    int result = 0;
    while (!st.empty()) {
        TreeNode* node = st.top();
        if (node != NULL) {
            st.pop();
            st.push(node);                          // 中
            st.push(NULL);
            depth++;
            if (node->right) st.push(node->right);  // 右
            if (node->left) st.push(node->left);    // 左

        } else {
            st.pop();
            node = st.top();
            st.pop();
            depth--;
        }
        result = result > depth ? result : depth;
    }
    return result;
}

然后再用栈来模拟后序遍历,遍历每一个节点的时候,再去判断左右孩子的高度是否符合,代码如下:

bool isBalanced(TreeNode* root) {
    stack st;
    if (root == NULL) return true;
    st.push(root);
    while (!st.empty()) {
        TreeNode* node = st.top();                       // 中
        st.pop();
        if (abs(getDepth(node->left) - getDepth(node->right)) > 1) { // 判断左右孩子高度是否符合
            return false;
        }
        if (node->right) st.push(node->right);           // 右(空节点不入栈)
        if (node->left) st.push(node->left);             // 左(空节点不入栈)
    }
    return true;
}

整体代码如下:

class Solution {
private:
    int getDepth(TreeNode* cur) {
        stack st;
        if (cur != NULL) st.push(cur);
        int depth = 0; // 记录深度
        int result = 0;
        while (!st.empty()) {
            TreeNode* node = st.top();
            if (node != NULL) {
                st.pop();
                st.push(node);                          // 中
                st.push(NULL);
                depth++;
                if (node->right) st.push(node->right);  // 右
                if (node->left) st.push(node->left);    // 左

            } else {
                st.pop();
                node = st.top();
                st.pop();
                depth--;
            }
            result = result > depth ? result : depth;
        }
        return result;
    }

public:
    bool isBalanced(TreeNode* root) {
        stack st;
        if (root == NULL) return true;
        st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();                       // 中
            st.pop();
            if (abs(getDepth(node->left) - getDepth(node->right)) > 1) {
                return false;
            }
            if (node->right) st.push(node->right);           // 右(空节点不入栈)
            if (node->left) st.push(node->left);             // 左(空节点不入栈)
        }
        return true;
    }
};

当然此题用迭代法,其实效率很低,因为没有很好的模拟回溯的过程,所以迭代法有很多重复的计算。

虽然理论上所有的递归都可以用迭代来实现,但是有的场景难度可能比较大。

例如:都知道回溯法其实就是递归,但是很少人用迭代的方式去实现回溯算法!

因为对于回溯算法已经是非常复杂的递归了,如果再用迭代的话,就是自己给自己找麻烦,效率也并不一定高。

#总结

通过本题可以了解求二叉树深度 和 二叉树高度的差异,求深度适合用前序遍历,而求高度适合用后序遍历。

本题迭代法其实有点复杂,大家可以有一个思路,也不一定说非要写出来。

但是递归方式是一定要掌握的

你可能感兴趣的:(数据结构,算法,c++,leetcode)