- 探秘Apache NetBeans Maven插件:nbm-maven-plugin深度剖析
穆璋垒Estelle
探秘ApacheNetBeansMaven插件:nbm-maven-plugin深度剖析netbeans-mavenutils-nbm-sharedApacheNetBeansMavenUtilsNBM-Shared是一个用于共享ApacheNetBeansMaven插件的通用代码的库。它包含了许多用于处理Maven插件的通用代码,如解析POM文件、处理依赖关系、生成NBM文件等。这个库适用于任何
- 如何开始使用AoE:深度解析与实战指南
邓越浪Henry
如何开始使用AoE:深度解析与实战指南AoEAoE(AIonEdge,终端智能,边缘计算)是一个终端侧AI集成运行时环境(IRE),帮助开发者提升效率。项目地址:https://gitcode.com/gh_mirrors/ao/AoE项目概述AoE是一个源于滴滴出行的开源项目,旨在解决特定领域的技术挑战。尽管没有详细描述其具体功能,我们基于常规开源项目结构和说明来构建本教程。本指南将深入探讨其核
- 探索GigaChat与LangChain的完美结合:深度解析与实战指南
asdfujhgy
langchaineasyui前端python
探索GigaChat与LangChain的完美结合:深度解析与实战指南引言在人工智能的领域中,语言模型和嵌入技术正逐步改变我们与数据交互的方式。GigaChat作为一种创新的AI嵌入服务,结合LangChain可以提供强大的文本嵌入功能,促进自然语言处理任务的完成。本篇文章将带你深入了解如何结合GigaChat与LangChain进行文本嵌入,并提供实用的代码示例与解决方案。主要内容GigaCha
- 广度优先搜索(BFS)算法解决迷宫最短路径问题
CDSNT
宽度优先算法c++
问题描述:①迷宫由n行m列的单元格组成(n,m都小于等于50)②每个单元格要么是空地,要么是障碍物现请你找到一条从起点到终点的最短路径,输出最短路径及其长度,若不存在,则输出“NoAnswer.”。输入迷宫大小(n行m列):5411011111110110111110输入起点的坐标:00输入终点的坐标:32输出:最短路径长度为7最短路径:(0,0)(1,0)(2,0)(3,0)(4,0)(4,1)
- 人工智能学习框架:深入解析与实战指南
一ge科研小菜鸡
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言随着人工智能(AI)技术的飞速发展,深度学习、强化学习和自然语言处理等领域的应用愈加广泛。掌握人工智能学习框架(如TensorFlow、PyTorch、Keras等)已成为开发智能系统、研究前沿技术的必备技能。本指南将全面介绍人工智能主流学习框架的特点、安装方法、核心功能,以及通过实践案例展示如何使用这些框架进行AI模型开发、训练与优化。1.
- MyBatis--09--PageHelper插件分页 实现原理
知行合一。。。
Spring基础知识--SSMmybatis
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录PageHelper分页的实现方式1.debug至此整个查询过程完成,原来PageHelper的分页功能是通过==Limit拼接SQL实现的==。2.PageHelper深度分页查询效率低3.解决方案PageHelper分页的实现方式项目一直使用的是PageHelper实现分页功能,项目前期数据量较少一直没有什么问题。随着业务
- 2024年MR应用深度解析:Meta商店中的游戏与非游戏应用
花生糖@
AIGC学习资料库mr游戏MistralAImeta
随着混合现实(MR)技术的不断进步,越来越多的应用开始集成这种新型交互方式。本文基于对Meta商店中部分具有代表性的MR应用的研究,探讨了游戏与非游戏类应用之间的对比分析,并深入细分每个类别下的亮点推荐。数据收集方法本报告聚焦于那些具备MR组件的应用程序,包括从一开始就以MR为核心构建的应用和后来加入MR模式的传统VR体验。由于研究和数据抓取过程主要依赖手动操作,因此可能遗漏了一些应用。我们鼓励读
- c#提取字符串到Excel中深度解析
超级无敌暴龙战士塔塔开
C#c#excelwindows
usingSystem;usingSystem.Collections.Generic;usingSystem.IO;usingMicrosoft.Office.Interop.Excel;usingOfficeOpenXml;namespacedemo1{classProgram{staticvoidMain(string[]args){//定义字符串stringinput="艾伦,17,男";
- 【前沿聚焦】机器学习的未来版图:从自动化到隐私保护的技术突破
网罗开发
人工智能AI大模型机器学习人工智能
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 【EI复现】【基于改进粒子群算法求解】一种建筑集成光储系统规划运行综合优化方法(Matlab代码实现)
创新优化代码学习
算法matlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码、数据、文档讲解1概述文献来源:摘要:容量优化配置与能量调度是建筑集成光储系统(buildingintegratedphotovoltaic,BIPV)规划和运行阶段的核心问题,合理的容量配置及能量调度能够有效提升系统的经济
- 【EI复现】【基于改进粒子群算法求解】一种建筑集成光储系统规划运行综合优化方法(Matlab代码实现)
砌墙_2301
算法matlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码、数据、文档讲解1概述文献来源:摘要:容量优化配置与能量调度是建筑集成光储系统(buildingintegratedphotovoltaic,BIPV)规划和运行阶段的核心问题,合理的容量配置及能量调度能够有效提升系统的经济
- AI人工智能深度学习算法:搭建可拓展的深度学习模型架构
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
AI人工智能深度学习算法:搭建可拓展的深度学习模型架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,深度学习作为其主要驱动力之一,已经在各个领域取得了显著的成果。然而,随着模型规模的不断扩大,如何高效地搭建、训练和部署深度学习模型,成为一个亟待解决的问题。传统的单机训练方式在计算资源有限的情况
- LeetCode - #195 Swift 实现打印文件中的第十行
网罗开发
Swiftvue.jsleetcodeswift
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 三种插入排序算法
juechen333
数据结构排序算法算法数据结构插入排序
目录1.直接插入排序直接插入排序的步骤示例直接插入排序的特点适用场景2.折半插入排序折半插入排序的基本原理折半插入排序的实现过程折半插入排序的时间复杂度折半插入排序的特点3.希尔排序希尔排序的基本原理希尔排序的步骤举例希尔排序的时间复杂度希尔排序的空间复杂度希尔排序的特点希尔排序的适用场景四、代码实现1.直接插入排序直接插入排序(InsertionSort)是一种简单的排序算法,其基本原理是将数组
- # 第一章:认识chatgpt
出门喝奶茶
chatgptchatgpt
chatgpt发展背景详细介绍一、基础理论背景人工智能和自然语言处理的兴起早期理论:20世纪中期,人工智能(AI)初见端倪,目标是模拟人类智能。自然语言处理作为AI的重要分支,致力于让机器理解和生成人类语言。关键里程碑:1980年代的统计方法和2000年代的神经网络技术,使NLP实现了从规则驱动到数据驱动的转变。神经网络与深度学习2010年代,深度学习的兴起极大推动了NLP的发展。基于大规模语料库
- 机器学习&深度学习目录
UQI-LIUWJ
各专栏目录深度学习人工智能1024程序员节
机器学习模型机器学习笔记:Transformer_刘文巾的博客-CSDN博客attention相关机器学习笔记:attention_UQI-LIUWJ的博客-CSDN博客机器学习笔记:ELMOBERT_UQI-LIUWJ的博客-CSDN博客机器学习笔记:ViT(论文AnImageIsWorth16X16Words:TransformersforImageRecognitionatScale)_UQ
- 深入EPnP算法
JesseChen79
SLAM计算机视觉EPnPComputerVisionPnP位姿估计
[原创]深入EPnP算法本文是JesseChen的原创文章。PnP问题是研究如何从3D-2D匹配对中求解摄像头位姿,EPnP算法是一种非迭代的PnP算法。本文作者用baidu搜索了“EPnP算法”时,能找到的中文介绍不多,而且这些网文并没有深入研究这个算法,找出这个算法的精妙点。因此贴出这篇文章,希望能给大家带来我对EPnP算法的理解。有问题的同学,可以联系
[email protected]讨论。文
- pymoo:Python中的多目标优化框架
葛梓熙
pymoo:Python中的多目标优化框架pymoo项目地址:https://gitcode.com/gh_mirrors/pym/pymoo项目介绍pymoo是一个开源的多目标优化框架,专为Python开发者设计。它提供了最先进的单目标和多目标优化算法,以及与多目标优化相关的多种功能,如可视化和决策支持。无论你是学术研究者还是工业应用开发者,pymoo都能帮助你轻松实现复杂的多目标优化任务。项目
- 使用Python调用OpenCV中的solvePnP函数
WzisTypescript
pythonopencv开发语言OpenCV
OpenCV是一个广泛使用的计算机视觉库,它提供了许多用于处理图像和视频的功能。其中一个重要的功能是解决透视投影问题,也就是通过已知的3D点和对应的2D图像点来计算相机的位姿。在OpenCV中,solvePnP函数就是用于解决这个问题的。solvePnP函数使用了一种称为Perspective-n-Point(PnP)问题的算法,它可以估计相机的旋转和平移向量,从而确定相机在3D空间中的位置。这对
- 影视制作的未来:云渲染+虚拟制作+AI生成技术
LhcyyVSO
AIGC云渲染影视动画人工智能3d云渲染渲染农场AIAICG虚拟制作
在计算机技术和人工智能技术飞速发展的2024年,影视制作正在经历一场前所未有的变革。云渲染、虚拟制作和AI生成等新影视制作技术的结合,正在重新定义数字内容的创作流程,为影视产业带来了全新的可能性和机遇。这些前沿技术不仅提高了制作效率,还打开了无限的创作空间,有望引领未来的影视制作走向新的高峰。云渲染:加速创意实现影视的后期特效制作阶段需要大量的计算机参与渲染。传统的渲染过程耗时长且成本高,而云渲染
- 打造你的聊天助手:使用C#、OpenAI和Spectre.Console创建控制台ChatGPT客户端
墨夶
C#学习资料1c#chatgpt开发语言
打造你的聊天助手:使用C#、OpenAI和Spectre.Console创建控制台ChatGPT客户端在这个人工智能飞速发展的时代,ChatGPT以其卓越的对话能力和智能回答在聊天领域引起了革命。你是否想过将这种能力融入到你的控制台应用中,让命令行界面也能拥有智能对话的体验?本文将带你一步步使用C#、OpenAI的API和Spectre.Console库,创建一个功能强大的控制台ChatGPT客户
- 软件测试中的AI-为什么它在软件自动化测试中很重要?
测试界霄霄
软件测试人工智能功能测试自动化测试软件测试程序人生职场和发展
通俗地说,人工智能(AI)是计算机科学的一个领域,它专注于使机器“智能化”。所谓智能,就是使系统能够像人类一样学习和做出决策。因此,人工智能机器将能够学习如何在特定情况下做出反应,然后根据其学习情况在未来场景中做出决策。人工智能(AI)在大多数领域的应用仍处于早期阶段,想要完美运行还需要很长时间。今天的人工智能(AI)技术可以帮助我们完成许多不需要复杂思考的重复性日常任务。接下来,让我们讨论软件测
- 两种交换排序算法--冒泡,快速
juechen333
课程学习记录排序算法算法数据结构冒泡排序快速排序
目录1.冒泡排序原理2.快速排序原理3.冒泡代码实现4.快速排序代码实现1.冒泡排序原理冒泡排序(BubbleSort)是一种简单的排序算法,基本思想是通过反复交换相邻的元素,直到整个序列有序。它的名字来源于较大的元素像气泡一样“浮”到序列的顶部。原理:初始状态:我们从数组的第一个元素开始,比较相邻的两个元素。如果第一个元素大于第二个元素,就交换它们的位置;如果不大,则继续比较下一对元素。第一轮排
- 容器化检索增强框架(R2R)
deepdata_cn
RAGRAG
R2RbySciPhi-AI是一个专门的RAG框架,专注于通过迭代细化来改进检索过程。主要特点包括实现新颖的检索算法,支持多步检索过程,与各种嵌入模型和向量存储集成,以及用于分析和可视化检索性能的工具。适合有兴趣突破检索技术界限的开发人员和研究人员,特别是在需要创新检索方法的场景。具有RESTfulAPI的容器化检索增强一代(RAG)。具有生产就绪型功能,包括多模式内容摄取、混合搜索功能、可配置的
- 遥感深度学习过程中图像分割的尺寸对模型训练结果的影响
司南锤
深度学习遥感深度学习人工智能
1.计算资源与显存占用大尺寸图像:需要更高的显存和计算资源,可能限制训练时的批大小(batchsize),甚至导致无法训练。解决方案:通常将大图裁剪为小尺寸的补丁(patches),例如256x256或512x512。小尺寸图像:显存占用低,但可能丢失全局上下文信息(如大面积地物分布),影响模型对复杂场景的理解。2.模型感受野与上下文信息小尺寸输入:模型感受野受限,可能无法捕捉大范围地物(如河流、
- 06-机器学习-数据预处理
不会打代码呜呜呜呜
机器学习机器学习人工智能
数据清洗数据清洗是数据预处理的核心步骤,旨在修正或移除数据集中的错误、不完整、重复或不一致的部分,为后续分析和建模提供可靠基础。以下是数据清洗的详细流程、方法和实战示例:一、数据清洗的核心任务问题类型表现示例影响缺失值数值型字段为空(NaN)模型无法处理缺失值,导致训练中断或偏差异常值年龄=200岁,房价=-100万扭曲统计指标(如均值),降低模型泛化性重复数据两行记录完全相同导致模型过拟合,降低
- 从零推导线性回归:最小二乘法与梯度下降的数学原理
Echo-Nie
机器学习机器学习线性回归人工智能梯度下降数学推导
欢迎来到我的主页:【Echo-Nie】本篇文章收录于专栏【机器学习】本文所有内容相关代码都可在以下仓库中找到:Github-MachineLearning1线性回归1.1什么是线性回归线性回归是一种用来预测和分析数据之间关系的工具。它的核心思想是找到一条直线(或者一个平面),让这条直线尽可能地“拟合”已有的数据点,通过这条直线,我们可以预测新的数据。eg:假设你想预测房价,你知道房子的大小(面积)
- 在计算机上本地运行 Deepseek R1
itmanll
linux
DownloadOllamaonLinuxDownloadOllamaonWindowsDownloadOllamaonmacOSDeepseekR1是一个强大的人工智能模型,在科技界掀起了波澜。它是一个开源语言模型,可以与GPT-4等大玩家展开竞争。但更重要的是,与其他一些模型不同,您可以在自己的计算机上本地运行DeepseekR1。linux步骤第1步:下载Ollama并安装curl-fsSL
- 最新整理股票API接口大全 | 股票tick数据接口 | 港股美股数据接口
xhwyl8
websocketpython开发语言
文章目录前言接口列表1、获取港股深度实时报价接口2、获取港股实时行情接口3、获取港股实时K线接口4、WebSocket订阅港股实时报价推送5、WebSocket订阅港股实时深度报价推送6、获取美股深度实时报价接口7、获取美股实时行情接口8、获取美股实时K线接口9、WebSocket订阅美股实时报价推送10、WebSocket订阅美股实时深度报价推送前言近年来,随着金融科技的迅猛发展,股票市场的信息
- 超实用的 30 段 Python 案例(上)
Python之栈
python开发语言
Python是目前最流行的语言之一,它在数据科学、机器学习、web开发、脚本编写、自动化方面被许多人广泛使用。它的简单和易用性造就了它如此流行的原因。如果你正在阅读本文,那么你或多或少已经使用过Python或者对Python感兴趣。在本文中,我们将会介绍30个简短的代码片段,你可以在30秒或更短的时间里理解和学习这些代码片段。1.检查重复元素下面的方法可以检查给定列表中是否有重复的元素。它使用了s
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key