- 高级测试简历借鉴--深圳0803
V紫玲珑
简历制作测试工程师
大咖简历借鉴程高级工程师♂-高级-13-20k-7年一、基本信息(关键字)1、目前正在找工作+联系方式+邮箱介绍(性别|28岁(1991年X月X日)|现居住深圳|7年工作经验)2、最近工作(2年)+最高学历/学位最近工作(2年)职位:高级软件工程师公司:腾讯科技深圳有限公司行业:计算机软件最高学历/学位专业:信息与计算科学学校:武汉信息科技学院学历/学位:本科(统招3、目前年收入:15万元(包含基
- GraphRAG、Naive RAG框架总结主流框架推荐(共23个):LightRAG、nano-GraphRAG、Fast-GraphRAG、Dify、RAGflow等
汀、人工智能
LLM工业级落地实践LLM技术汇总人工智能RAG检索系统搜索推荐检索增强生成GraphRAGDify
设想你正致力于构建一个智能问答系统,该系统旨在从庞大的知识库中迅速而精确地提取关键信息,并据此生成自然流畅的回答。然而,随着数据规模的不断扩大,系统面临着严峻的挑战:检索效率逐渐下滑,生成内容的质量亦趋于下降。这正是当前众多检索增强型生成(RAG)系统亟需解决的核心问题——如何在数据冗余、检索效率低下以及生成内容不相关之间找到一个最佳的平衡点。RAG的发展瓶颈:传统RAG系统通过检索模型提取最相关
- LLM系列(0):行业大模型落地服务在全业务场景的应用与探索【大模型智能问答、NL2SQL、文档智能分析智能生成、AI智能体决策等】
汀、人工智能
LLM工业级落地实践人工智能自然语言处理promptNL2DSLNL2SQL大模型智能问答
行业大模型落地服务:在全业务场景的应用与探索1.行业大模型落地挑战及应对1.1.挑战一:有限的算力资源在政企客户场景中落地行业大模型方案,可能首先面临的一个挑战是客户的算力资源有限。算力资源作为大模型落地的前提条件,是很多客户关注的重点,也是业务团队前期与客户沟通交流的一个重点。行业大模型场景落地是否一定需要大量的GPU算力,以及需要多少的算力才能满足落地需求?GPU算力主要消耗在两个地方,一是大
- 【llm对话系统】大模型 RAG 之回答生成:融合检索信息,生成精准答案
kakaZhui
人工智能AIGCchatgptllama
今天,我们将深入RAG流程的最后一步,也是至关重要的一步:回答生成(AnswerGeneration)。在这一步,LLM将融合用户问题和检索到的文档片段,生成最终的答案。这个过程不仅仅是简单的文本拼接,更需要LLM对检索结果进行理解、推理和整合,才能输出准确、流畅且符合用户需求的答案。一、回答生成的目标RAG中回答生成的目标主要包括:准确性(Accuracy):生成的答案需要准确回答用户的问题,并
- 探索SakuraLLM:轻小说与Galgame翻译的新纪元
蒋素萍Marilyn
探索SakuraLLM:轻小说与Galgame翻译的新纪元SakuraLLM适配轻小说/Galgame的日中翻译大模型项目地址:https://gitcode.com/gh_mirrors/sa/SakuraLLM在人工智能的浪潮中,SakuraLLM以其独特的魅力和强大的功能,成为了日中翻译领域的一颗璀璨明星。本文将深入介绍SakuraLLM项目,分析其技术特点,探讨其应用场景,并揭示其与众不同
- 为AI聊天工具添加一个知识系统 之77 详细设计之18 正则表达式 之5
一水鉴天
人工语言软件智能智能制造人工智能正则表达式
本文要点昨天讨论了本项目(AI聊天工具添加一个知识系统)中正则表达式模板的设计中可能要考虑到的一些问题(讨论到的内容比较随意,暂时无法确定那些考虑是否应该是正则表达式模板设计要考虑的以及是否完整)。今天我们在正则表达式更高设计层次上看看本项目的整个正则表达式应该是怎样的。先给出综述:开发时/运行时/生产时(三世归一化时间投影X-piece-scale,三代连坐时间并行升级换代)的三界标准化空间(位
- 大模型问答机器人的智能化程度
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型、问答机器人、智能化程度、自然语言处理、深度学习、Transformer模型、知识图谱、推理能力、对话系统1.背景介绍近年来,人工智能技术取得了飞速发展,特别是深度学习的兴起,为自然语言处理(NLP)领域带来了革命性的变革。其中,大模型问答机器人作为一种新型的智能交互系统,凭借其强大的语言理解和生成能力,在客服、教育、娱乐等领域展现出广阔的应用前景。问答机器人是指能够理解用户自然语言问题并给
- AI学习指南Ollama篇-Ollama的多模态应用探索
俞兆鹏
AI学习指南ai
AI学习指南应用篇-Ollama的多模态应用探索一、引言(一)背景介绍随着大语言模型(LLM)的发展,多模态应用(结合文本、图像、语音等)成为新的趋势。多模态模型能够处理多种类型的数据,如文本、图像和语音,从而提供更丰富、更智能的交互体验。Ollama作为本地部署工具,支持多模态模型的运行,为开发者提供了强大的功能。(二)文章目标本文将探讨Ollama在多模态应用中的可能性,并通过实际案例展示如何
- 大语言模型原理与工程实践:残差连接与层归一化
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着自然语言处理(NLP)的发展,深度学习在过去几年中取得了令人瞩目的成果。其中,循环神经网络(RNN)和卷积神经网络(CNN)在图像和文本分类、语义角色标注、机器翻译等领域表现出色。然而,这些网络在训练过程中经常遭遇梯度消失和梯度爆炸的问题。为了解决这些问题,我们引入了残差连接(ResidualConnections)和层归一化(BatchNormalization)来改善模型性能。
- 【数据集】——1
花花 Show Python
pyecharts—从0到精通信息可视化数据分析python
解锁数据可视化的魔法钥匙——pyecharts实战指南在这个数据为王的时代,每一次点击、每一次交易、每一份报告背后都隐藏着无尽的故事与洞察。但你是否曾苦恼于如何将这些冰冷的数据转化为直观、吸引人的视觉盛宴?欢迎来到《pyecharts图形绘制大师班》在这里,你将不再受限于单调的表格和图表,而是学会如何运用pyecharts这一强大的Python数据可视化库,将复杂的数据转化为令人惊叹的交互式图形。
- 岩田聪游戏思想回顾
windwind2000
游戏业思考游戏游戏策划个人开发玩游戏创业创新
岩田聪主要负责经营企划部,与宫本茂的情报开发本部不同,更侧重企业战略,计划,管理,营销。二者类似战略与战术的关系,合在一起才是任天堂的完整思想。岩田聪的日常被各种会议,计划,采访,各种管理事务所占据,要面对上市公司财务压力与投资者质疑。wiiu失败时期压力很大。而宫本茂可以静心搞研发,不被打扰。……浓缩版:游戏研发的四大标准:创新,操作直观,吸引人-沉浸感,界面-新交互方式。/其中wiiu失败原因
- 基于STM32的小灵蛇智能冰箱设计
小灵蛇
STM32stm32嵌入式硬件单片机
目录一.设计背景二.设计目标三.硬件设计四.实验方案4.1方案概述4.2硬件设计思路4.2.1整体器件框架4.2.1.1微控制器4.2.1.2温度传感器4.2.1.3距离传感器4.2.1.4颜色传感器4.2.1.5显示屏4.2.1.6LED4.3模块连接框架4.4原理图设计方案本博客介绍了基于STM32的小灵蛇智能冰箱设计,涉及到的创作平台有ALTINUM、Keil5等等。如果想要实验报告、PPT
- 有道子曰推理模型“子曰-o1”发布即开源,14B小参数复现OpenAI o1强推理效果
百态老人
笔记
根据我搜索到的资料,网易有道于2025年1月22日正式发布了国内首个输出分步式讲解的推理模型“子曰-o1”,并宣布其开源。这一模型以14B(140亿)参数规模为基础,支持在消费级显卡上部署,采用思维链技术,能够提供详细且逻辑严密的解题过程,显著提升了推理能力和准确性,尤其是在中文逻辑推理方面表现突出。“子曰-o1”复现了OpenAI发布的o1模型的单模型推理能力,但通过更轻量级的设计实现了在低算力
- 开源 CSS 框架 Tailwind CSS v4.0
timer_017
人工智能
开源CSS框架TailwindCSSv4.0于1月22日正式发布,除了显著提升性能、简化配置体验外,还增强了功能特性,具体如下1:性能提升采用全新的高性能引擎Oxide,带来了构建速度的巨大飞跃:全量构建速度提升超3.5倍。增量构建速度提升超8倍。无新CSS的增量构建速度提升182倍。配置优化CSS优先配置:从JavaScript配置文件改为直接在CSS文件中使用@theme指令进行配置,简化了项
- 用自然语言与mysql数据库对话几种方案的思考
闲云野鹤_SG
数据库mysqlAItext2sql自然语言本地部署大模型
如何用自然语言与mysql数据库对话,而不是用sql语句去查询数据库?处于安全考虑,可训练一个本地大语言模型来完成此项任务,mysql服务器中的数据大约有两万多条记录,服务器的作用主要是记录设备的出库和回库的流水账(即以时间为序的记录),但有一些sql查询比较复杂,必须根据特定的sql语句查询,否则很难得到准确稳定的答案,调试和训练大模型的方法有多种方式,比如lora训练模型,提示词方式,rag方
- 子曰-o1:网易有道开源国内首个分步式讲解推理模型,支持K12数学教学
蚝油菜花
每日AI项目与应用实例人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发非常感兴趣,我会每日分享大模型与AI领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!微信公众号|搜一搜:蚝油菜花快速阅读功能:子曰-o1是国内首个分步式讲解推理模型,支持K12数学教学。技术:采用14B轻量级架构,专为消费级显卡设计,能在低显存设备上稳定运行。应用:应用于网易有道旗下的AI全科学习助手“有道小P
- Llama 3:开源大模型的里程碑式突破
XianxinMao
llama开源
标题:Llama3:开源大模型的里程碑式突破文章信息摘要:Meta通过Llama3展现了开源LLM的重大突破:采用超大规模训练数据和多阶段训练方法(SFT、rejectionsampling、PPO和DPO),突破了传统的Chinchilla最优比例法则。在产品策略上,针对8B和70B两种规模采用不同的训练数据截止日期,实现差异化定位。即将发布的400B模型有望达到GPT-4级别性能,但同时也凸显
- 对比DeepSeek、ChatGPT和Kimi的学术写作摘要能力
AIWritePaper官方账号
DeepSeekAIWritePaperChatGPT人工智能chatgptllama数据分析论文阅读
摘要摘要是文章的精华,通常在200-250词左右。要包括研究的目的、方法、结果和结论。让AI工具作为某领域内资深的研究专家,编写摘要需要言简意赅,直接概括论文的核心,为读者提供快速了解的窗口。下面我们使用DeepSeek、ChatGPT4以及Kimi辅助编写摘要。提示词:你现在是一名[计算机理论专家],研究方向集中在[人工智能、大模型、数据挖掘等计算机相关方向]。我现在需要撰写一篇围绕[人工智能在
- 贪心算法--加油站、公路问题
我不叫喂!我叫楚雨荨
贪心算法算法C++贪心算法算法
题目来自洛谷-P9749,传送门题目描述小苞准备开着车沿着公路自驾。公路上一共有nnn个站点,编号为从111到nnn。其中站点iii与站点i+1i+1i+1的距离为viv_ivi公里。公路上每个站点都可以加油,编号为iii的站点一升油的价格为aia_iai元,且每个站点只出售整数升的油。小苞想从站点111开车到站点nnn,一开始小苞在站点111且车的油箱是空的。已知车的油箱足够大,可以装下任意多的
- ImportError: DLL load failed while importing _rust: 找不到指定的程序的解决方案
爱编程的喵喵
Python基础课程pythonImportErrorDLLloadfailed_rust解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了ImportError:DLLloa
- 【vue3|第5期】Vue3响应式数据:ref 与 reactive 的深入解析
Commas.KM
Vuevue.jsjavascript前端vue3refreactive响应式数据
日期:2024年5月31日作者:Commas签名:(ง•_•)ง积跬步以致千里,积小流以成江海……注释:如果您觉得有所帮助,帮忙点个赞,也可以关注我,我们一起成长;如果有不对的地方,还望各位大佬不吝赐教,谢谢^-^1.01365=37.7834;0.99365=0.02551.02365=1377.4083;0.98365=0.0006文章目录一、前言二、ref(2-1)特性(2-2)使用场景三、
- 小南每日 AI 资讯 | 国产AI之光DeepSeek暴击硅谷??? | 25/01/29
小南AI学院
人工智能
1.中国AI模型震惊硅谷:DeepSeek为何一夜火出圈?国产AI大模型DeepSeek迅速崛起,引发硅谷关注。2.中国银行支持AI产业:1万亿元金融扶持助推智能化升级中国银行宣布提供1万亿元资金支持人工智能产业链发展,助力智能化升级。3.国产AI大模型DeepSeek惊艳全球:游戏科学冯骥称其为“国运级别科技成果”DeepSeek的AI模型引起全球关注,游戏科学的冯骥高度评价其意义。4.AI产业
- 家居 EDI:Haverty‘s EDI 需求分析
知行EDI
零售行业EDI知行ediEDI电子数据交换知行软件需求分析EDI知行EDI知行之桥
Haverty's成立于1885年,是一家历史悠久的美国家具零售商。公司致力于为客户提供高品质的家具和家居饰品,其产品线涵盖客厅、卧室、餐厅及办公家具等多个领域。电子数据交换(EDI)是一种通过标准化电子格式在商业伙伴之间进行数据交换的技术,可以显著提升企业的运营效率。通过EDI系统,Haverty's能够实现订单、发票和库存信息的自动化处理,从而减少人为错误并降低运营成本。EDI需求分析与Hav
- 大型语言模型构建指南:从头开始构建大语言模型《Build a Large Language Model (From Scratch)》免费PDF
AGI大模型学习
语言模型pdf人工智能大模型大模型学习大模型教程大模型书籍
通过从头开始构建一个大型语言模型,了解如何创建、训练和调整大型语言模型(LLMs)!一、构建大型语言模型(从头开始)在《构建大型语言模型(从头开始)》中,你将了解如何LLMs从内到外工作。在这本富有洞察力的书中,畅销书作家塞巴斯蒂安·拉施卡(SebastianRaschka)将指导你逐步创建自己的LLM,用清晰的文字、图表和示例解释每个阶段。你将从最初的设计和创建到通用语料库的预训练,一直到特定任
- 2025年第一个暴富机会,我连握住的机会都没有
2301_82086730
币蛇钞
中国人看重生肖文化。2025年是蛇年,蛇在民间被奉为聪慧、吉祥的“小龙”,加上去年龙币、龙钞强势破圈,使得2025年贺岁纪念币、纪念钞(以下简称蛇币、蛇钞)预约火爆,二手价格一度水涨船高。然而,随着蛇币、蛇钞各发行1亿枚(张)的消息传出,到了1月中旬,其价格连日下跌。中国人民银行表示,蛇币、蛇钞与现行流通人民币职能相同,与同面额人民币等值流通。不过,既然名为纪念币、纪念钞,人们倾向于将其定位于纪念
- LLM based Single Agent System
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM-BasedSingleAgentSystem:ANewEraofIntelligentAutomation关键词:大语言模型,单智能体系统,强化学习,自然语言处理,智能自动化1.背景介绍近年来,随着深度学习技术的快速发展,大语言模型(LLM)在自然语言处理(NLP)领域取得了突破性进展。LLM凭借其强大的语言理解和生成能力,正在改变着人们与信息交互的方式。同时,人工智能领域的另一个重要研究
- selenium clear()方法清除文本框内容
Change is good
seleniumpython测试工具
在使用Selenium进行Web自动化测试时,清除文本框内容是一个常见的需求。这可以通过多种方式实现,取决于你使用的是哪种编程语言(如Python、Java等)以及你的具体需求。以下是一些常见的方法:1.使用clear()方法clear()方法是Selenium提供的一个非常直接的方法来清除文本框的内容。这个方法会删除文本框中的所有内容,并将其设置为空字符串。python:fromselenium
- 理解随机森林算法
菌菌的快乐生活
算法随机森林机器学习
基本概念随机森林(RandomForest)是一种集成学习算法,它属于机器学习中的监督学习算法。简单来说,它就像是一群“专家”(决策树)在一起讨论并做出决策。想象你要判断一个水果是苹果还是橙子,你可以通过观察水果的颜色、形状、大小等特征。随机森林算法就是利用很多棵决策树来对这个水果进行判断。每一棵决策树就像一个小专家,它们根据自己对这些特征的判断来给出一个答案(是苹果还是橙子),最后综合这些小专家
- 【Sql Server】随机查询一条表记录,并重重温回顾下存储过程的封装和使用
web13688565871
面试学习路线阿里巴巴数据库oracle
大家好,我是,欢迎来到《小5讲堂》。这是《SqlServer》系列文章,每篇文章将以博主理解的角度展开讲解。温馨提示:博主能力有限,理解水平有限,若有不对之处望指正!目录前言随机查询语句存储过程基本概念基本结构基础例子存储过程封装文章推荐前言温故而知新,最近在写sql查询语句,需求是随机查询表的其中一条记录。基于这个查询,顺便把数据库自定义函数、存储过程这个两个知识点重温固定下。因此,本篇文章将在
- AI大模型如何赋能电商行业
十二点的泡面
ai
随着技术的发展,越来越多的电商平台开始尝试运用AI技术来提高销售效率,从用户体验到供应链管理,AI深刻影响着行业的未来发展趋势。在AI加持下,如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法,为电商行业的数字化转型提供新的思路和方法。方向一:介绍AI技术在电商中的创新应用在电商领域,AI技术的应用正日益广泛,其中
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不