目录
一、医疗大数据有哪些
二、医疗大数据的特性
1. 隐私性
2. 复杂性
3. 不均衡性
4. 时序性
三、医疗大数据的目标和挑战
博主曾经在医疗智能设备领域创业,由于当时选择的模式过于复杂,包括了机械硬件、智能终端软硬件、院后微信生态做随访服务等,甚至,在推广的过程中,发现医院的网络条件很差,给医院还免费铺设了WIFI,搞的对WIFIAP信号的布点调优,曾经很有一套。由此,可想而知,这个产品最后的结果如何,确实犯了一些错误。
现在AI时代了,来整理点AI和医疗大数据的资料。
医疗大数据,顾名思义,是指在医疗领域产生的海量数据。这些数据可能包括患者的病历信息、诊断记录、治疗方案、用药历史、医学影像、基因测序数据等。这些数据不仅数量巨大,而且种类繁多,结构化数据(如数据库中的表格)和非结构化数据(如文本、图像、音频、视频)并存。
医疗大数据的来源主要有以下几个方面:
医疗大数据的收集、存储、处理和分析需要遵循相关的法律法规和伦理规范,确保数据的安全性、隐私性和可靠性。同时,医疗大数据的应用也需要具备相关的技术和专业知识,以确保数据的有效利用和价值的最大化。
电子病历如同电商平台中的订单,不管是从管理上还是业务上,都是医疗数据的灵魂。
特别是病历首页。
医疗大数据,在存储空间的占用上,也是很大的。比如一张CT,就是150M左右,一个标准的病理图,要5G左右。而且传输、存储,都要考虑患者的隐私、数据安全、细节损耗等各种问题。我国是人口大国,即使一个社区医院,所要存储和处理的数据,就在千万亿字节的规模。
当然,这些字节,目前大部分都没有在“跳动”,都是沉睡,或者就在诊疗的过程中,损失了,没有被有效的全部管理起来。
即使我们个人,每次看病的过程,医生开的处方,去药店买的药店,其实也都没有管理起来。这些宝贵的历史数据,其实都应该被有效的联网和存储。这是未来一定会实现的事情,保险机构,将可能是对这块领域出资最有积极性,也最可行的金主。
其次还有制药的科研机构。
大数据还有一个开始苏醒,但是没有商业普及的领域,就是每个人的基因图谱。
基因最终是打开生命密码的钥匙。一个基因序列文件的大小,大概是750M到1G。
现在很多人都佩戴健康手环,每时每刻都在产生大量的数据,但是由于种种原因,这些数据基本都被忽略了,其实具有宝贵的科研和健康价值。
医疗大数据除了具有一般大数据的“4V”特性(即Volume数据量大、Variety数据类型多样、Velocity处理速度快、Value价值密度低)外,还具有其独特的特性,其中隐私性是最为重要和显著的一个。以下是医疗大数据的一些主要特性及相应的数据和例子:
医疗大数据涉及大量的个人健康信息,这些信息具有高度敏感性。隐私泄露可能导致歧视、身份盗窃、诈骗等严重后果。因此,保护医疗数据的隐私性是至关重要的。
数据和例子:
医疗大数据不仅数量庞大,而且种类繁多,包括结构化数据(如电子病历、实验室检查结果)和非结构化数据(如医学影像、医生手写的病历笔记)。这增加了数据处理和分析的复杂性。
数据和例子:
医疗大数据在不同疾病、不同人群中的分布是不均衡的。某些罕见疾病的数据可能非常稀少,而常见疾病的数据则相对丰富。
数据和例子:
医疗数据往往具有时序性,即数据是按照时间顺序产生的。这对于分析疾病的发展过程、治疗效果的评估等具有重要意义。
数据和例子:
医疗大数据具有隐私性、复杂性、不均衡性和时序性等特性。这些特性对医疗大数据的处理、分析和应用提出了独特的挑战和要求。
复杂性,其实其中比较麻烦的,就是多态性和不完整性。
多态,就是什么格式的数据都有,文本的,图像的,视频的,甚至还可能有声音的。图像也有各种不同的来源,不同的分辨率,格式。
不完整,就是我们经常无法获得一个患者的持续的某项监控数据指标,比如心态图,算是可以持续获得比较容易的了,背上一个设备,或者在医院住院,都行,那也无法持续监控,毕竟人的生活和生存质量,也是非常重要的。
医疗大数据已经是EB级。
1EB=1024PB,1PB=1024TB。
医疗大数据的目标在于通过收集、整合、分析和挖掘海量的医疗数据,为医疗决策、疾病预防、健康管理和科研创新提供强有力的数据支持。具体而言,它旨在提高医疗服务的效率和质量,降低医疗成本,推动个性化医疗和精准医疗的发展,并最终改善人们的健康状况和生活质量。
然而,实现这一目标的道路并非坦途。医疗大数据面临着多方面的挑战:
首先,数据的隐私性和安全性问题是医疗大数据面临的最大挑战之一。由于医疗数据具有高度敏感性,涉及患者的隐私信息,因此必须采取严格的数据加密、匿名化处理和访问控制等措施来保护数据的安全。例如,某大型医疗机构曾因未妥善保护患者数据而遭受黑客攻击,导致大量隐私信息泄露,给患者和医疗机构带来了巨大的损失和信誉风险。
其次,医疗数据的复杂性和多样性也给数据处理和分析带来了挑战。医疗数据不仅包括结构化数据,如电子病历和实验室检查结果,还包括非结构化数据,如医学影像和医生手写笔记。这些数据类型各异,质量参差不齐,需要专业的数据清洗、整合和转换技术才能进行有效的分析。例如,在医学影像分析中,由于不同设备、不同参数设置产生的影像数据存在差异,因此需要开发专门的算法来识别和处理这些差异,以确保分析结果的准确性。
此外,医疗大数据的不均衡性也是一个需要克服的挑战。不同疾病、不同人群的医疗数据分布不均衡,某些罕见疾病的数据可能非常稀少,而常见疾病的数据则相对丰富。这种不均衡性可能导致某些疾病的研究缺乏足够的数据支持,从而限制了医疗大数据的应用范围。例如,在研发针对罕见疾病的新药时,由于病例数有限,研究人员可能难以收集到足够的数据来验证药物的有效性和安全性。
最后,医疗大数据的伦理和法律问题也不容忽视。在收集和使用医疗数据时,必须遵守相关的法律法规和伦理规范,确保数据的合法性和道德性。例如,在未经患者同意的情况下,医疗机构不得将其隐私信息用于商业目的或泄露给第三方。否则,将可能面临法律责任和公众谴责。
医疗大数据的目标虽然远大而美好,但要实现这一目标并不容易。需要克服隐私保护、数据处理、不均衡性以及伦理法律等多方面的挑战。只有通过不断创新和努力,才能逐步推动医疗大数据的发展和应用,最终造福人类健康。