Android Input事件系统分析

讲起事件传递时,都会从Window RootViewImpl 讲起 然后再讲View层的一些处理逻辑,
但传递的事件到底是从哪里来的,当我们触摸屏幕的时候MotionEvent是如何被创建 并传送到目标窗口的,
这里面系统都做了什么呢?

猜想

事件一定有一个从捕获到分发的过程,为了保证实时性因此会有一个线程一直在轮询监听事件,一旦捕获到触摸事件,通过某种规则筛选出所需的窗口,然后通过某种通讯方式分发给所需窗口

一探究竟(基于Android7.1)

我们知道系统服务会在SystemServer中进行实例化操作,我们先将目光放在InputManagerService(以下简称IMS)上,InputManagerService是Android处理各种用户操作抽象的一个服务,是InputManager的真身,在SystemServer中实例化后与WindowManagerService(以下简称WMS)一起添加到ServiceManager中

private void startOtherServices() {
          
             inputManager = new InputManagerService(context);
            wm = WindowManagerService.main(context, inputManager,
                    mFactoryTestMode != FactoryTest.FACTORY_TEST_LOW_LEVEL,
                    !mFirstBoot, mOnlyCore);
            ServiceManager.addService(Context.WINDOW_SERVICE, wm);
            ServiceManager.addService(Context.INPUT_SERVICE, inputManager);
    }

由上面代码片段可以看出 IMS与WMS同时被添加进ServiceManager中,WMS有着IMS的引用
有此推断IMS负责触摸事件的捕获,WMS负责将事件派发到目标窗口上。
IMS构造方法中调用nativeInit创建NativeInputManager

nativeInit.png

NativeInputManager::NativeInputManager(jobject contextObj,
        jobject serviceObj, const sp& looper) :
        mLooper(looper), mInteractive(true) {
 //......
    sp eventHub = new EventHub();
    mInputManager = new InputManager(eventHub, this, this);
}

这里EventHub 主要负责监听设备事件包括输入设备的拔插,触摸 按钮 鼠标事件等,通过EventHub的getEvents就可以监听并获取该事件,
主要是面向/dev/input 目录下的event设备节点,我们可以用cat 命令查看这些节点,当有输入设备有输入时对应节点会有相应的打印,或者通过getevent命令查看如下

getevent.png

此打印是我 按home键与返回键的打印(如果你此时触摸屏幕会看到跟多打印)
打印为16进制对应过来66 对应 102 ,9e 对应158
查看 system/usr/keylayout/ 对应关系如下
查看对应关系.png

我们接下来看InputManager,InputManager 创建时伴随创建了 InputDispatcher 与 InputReader 并将
InputDispather 与EventHub传入了InputReader
InputManager .png

通过上面可以看到 伴随创建完之后调用了initialize
并开启了两个线程 通过字面意思也可看出
InputReaderThread 负责读取 InputDispatcherThread 负责分发

先来看读取InputReaderThread
InputReaderThread::InputReaderThread(const sp& reader) :
        Thread(/*canCallJava*/ true), mReader(reader) {
}
bool InputReaderThread::threadLoop() {
    mReader->loopOnce();
    return true;
}
void InputReader::loopOnce() {
   //获取事件 并处理分发
    size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);
    processEventsLocked(mEventBuffer, count);
   //派发 这里的 为在InputManger中穿件传入的 mDispatcher 
    mQueuedListener->flush();
}

由上可知 InputManager -> initialize创建一个InputReaderThread ThreadLoop线程 不断的读取输入事件
然后通知 派发 读取流程图如下

读取到派发.png

接下来看如何分发 InputDispather

在InputManger创建时可知,InputReader传入的mQueuedListener其实就是InputDispatcher对象, 所以mQueuedListener->flush()就是通知InputDispatcher事件读取完毕,可以派发事件了

bool InputDispatcherThread::threadLoop() {
    mDispatcher->dispatchOnce();
    return true;
}
void InputDispatcher::dispatchOnce() {
    { 
  //被唤醒执行
        if (!haveCommandsLocked()) {
            dispatchOnceInnerLocked(&nextWakeupTime);
        }
    } 
  //睡眠等待事件
    mLooper->pollOnce(timeoutMillis);
}

以上就是分发线程的简化代码,dispatchOnceInnerLocked是具体的分发处理逻辑,简化后具体如下

void InputDispatcher::dispatchOnceInnerLocked(nsecs_t* nextWakeupTime) {
   
    case EventEntry::TYPE_CONFIGURATION_CHANGED: {
        ConfigurationChangedEntry* typedEntry =
                static_cast(mPendingEvent);
        done = dispatchConfigurationChangedLocked(currentTime, typedEntry);
        dropReason = DROP_REASON_NOT_DROPPED; // configuration changes are never dropped
        break;
    }

    case EventEntry::TYPE_DEVICE_RESET: {
        DeviceResetEntry* typedEntry =
                static_cast(mPendingEvent);
        done = dispatchDeviceResetLocked(currentTime, typedEntry);
        dropReason = DROP_REASON_NOT_DROPPED; // device resets are never dropped
        break;
    }

    case EventEntry::TYPE_KEY: {
        KeyEntry* typedEntry = static_cast(mPendingEvent);
        if (isAppSwitchDue) {
            if (isAppSwitchKeyEventLocked(typedEntry)) {
                resetPendingAppSwitchLocked(true);
                isAppSwitchDue = false;
            } else if (dropReason == DROP_REASON_NOT_DROPPED) {
                dropReason = DROP_REASON_APP_SWITCH;
            }
        }
        if (dropReason == DROP_REASON_NOT_DROPPED
                && isStaleEventLocked(currentTime, typedEntry)) {
            dropReason = DROP_REASON_STALE;
        }
        if (dropReason == DROP_REASON_NOT_DROPPED && mNextUnblockedEvent) {
            dropReason = DROP_REASON_BLOCKED;
        }
        done = dispatchKeyLocked(currentTime, typedEntry, &dropReason, nextWakeupTime);
        break;
    }

    case EventEntry::TYPE_MOTION: {
        MotionEntry* typedEntry = static_cast(mPendingEvent);
        if (dropReason == DROP_REASON_NOT_DROPPED && isAppSwitchDue) {
            dropReason = DROP_REASON_APP_SWITCH;
        }
        if (dropReason == DROP_REASON_NOT_DROPPED
                && isStaleEventLocked(currentTime, typedEntry)) {
            dropReason = DROP_REASON_STALE;
        }
        if (dropReason == DROP_REASON_NOT_DROPPED && mNextUnblockedEvent) {
            dropReason = DROP_REASON_BLOCKED;
        }
        done = dispatchMotionLocked(currentTime, typedEntry,
                &dropReason, nextWakeupTime);
        break;
    }
    }
}

可以看到,真对不同的类型如 TYPE_MOTION、TYPE_KEY来进行不同的分发,本文探究的是触摸事件,
着重看 TYPE_MOTION 事件的分发 dispatchMotionLocked

bool InputDispatcher::dispatchMotionLocked(
  //找到 目标window 
        injectionResult = findTouchedWindowTargetsLocked(currentTime,
                entry, inputTargets, nextWakeupTime, &conflictingPointerActions);
 //执行分发
    dispatchEventLocked(currentTime, entry, inputTargets);
    return true;
}
int32_t InputDispatcher::findTouchedWindowTargetsLocked(nsecs_t currentTime,
        const MotionEntry* entry, Vector& inputTargets, nsecs_t* nextWakeupTime,
        bool* outConflictingPointerActions) {
    //遍历所有窗口
        size_t numWindows = mWindowHandles.size();
        for (size_t i = 0; i < numWindows; i++) {
            sp windowHandle = mWindowHandles.itemAt(i);
            const InputWindowInfo* windowInfo = windowHandle->getInfo();
            if (windowInfo->displayId != displayId) {
                continue; // wrong display
            }

            int32_t flags = windowInfo->layoutParamsFlags;
            if (windowInfo->visible) {
                if (! (flags & InputWindowInfo::FLAG_NOT_TOUCHABLE)) {
                    isTouchModal = (flags & (InputWindowInfo::FLAG_NOT_FOCUSABLE
                            | InputWindowInfo::FLAG_NOT_TOUCH_MODAL)) == 0;
                    if (isTouchModal || windowInfo->touchableRegionContainsPoint(x, y)) {
     //找到 目标窗口
                        newTouchedWindowHandle = windowHandle;
                        break; // found touched window, exit window loop
                    }
                }
    }
    
void InputDispatcher::dispatchEventLocked(nsecs_t currentTime,
        EventEntry* eventEntry, const Vector& inputTargets) {

    for (size_t i = 0; i < inputTargets.size(); i++) {
              ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel);
              sp connection = mConnectionsByFd.valueAt(connectionIndex);
            prepareDispatchCycleLocked(currentTime, connection, eventEntry, &inputTarget);
        }
    }
}

prepareDispatchCycleLocked()调用 enqueueDispatchEntriesLocked()然后调用
startDispatchCycleLocked

void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,
        const sp& connection) {
//......
        case EventEntry::TYPE_MOTION: {
            // Publish the motion event.
            status = connection->inputPublisher.publishMotionEvent(dispatchEntry->seq,
                    motionEntry->deviceId, motionEntry->source,
                    dispatchEntry->resolvedAction, motionEntry->actionButton,
                    dispatchEntry->resolvedFlags, motionEntry->edgeFlags,
                    motionEntry->metaState, motionEntry->buttonState,
                    xOffset, yOffset, motionEntry->xPrecision, motionEntry->yPrecision,
                    motionEntry->downTime, motionEntry->eventTime,
                    motionEntry->pointerCount, motionEntry->pointerProperties,
                    usingCoords);
//......
    }
}

mWindowHandles为所有窗口,findTouchedWindowTargetsLocked的就是从mWindowHandles中找到目标窗口,规则太复杂,有兴趣可以自行分析。mWindowHandles的值是在InputDispatcher::setInputWindows中传入的,
setInputWindows 由WMS进行调用,WMS中的InputMonitor会间接调用InputDispatcher::setInputWindows,这个时机主要是跟窗口增删等逻辑相关
获取事件与查找窗口已经安排完毕,但到此逻辑都是在SystemServer进程中,SystemServer进程是如何将事件发给应用进程,InputChannel是什么时候创建的,其实应用在setView()的是会调用IWindowSession的addToDisplay()函数。
IWindowSession的具体实现在\services\core\java\com\android\server\wm\Session.java
它包含了InputChannel的建立。它本身是个binder调用,服务端是WMS,最终调用的是WMS的addWindow方法。
InputChannel通过InputChannel.openInputChannelPair分别窗建一对InputChannel,然后将Server端的InputChannel注册到InputDispatcher中,将Client端的InputChannel返回给客户端应用。InputChannel数组的一对InputChannel,一个注册给了InputDispatcher,另一个交给应用程序ViewRootImpl。

public int addWindow(Session session, IWindow client, int seq,
            LayoutParams attrs, int viewVisibility, int displayId,
            Rect outContentInsets, Rect outStableInsets, Rect outOutsets,
            InputChannel outInputChannel) {
    .....
    WindowState win = new WindowState(this, session, client, token, 
                    attachedWindow, appOp[0], seq, attrs, viewVisibility, 
                    displayContent);
    ...
    if (outInputChannel != null && (attrs.inputFeatures
                    & LayoutParams.INPUT_FEATURE_NO_INPUT_CHANNEL) == 0) {
        String name = win.makeInputChannelName();
        //创建
        InputChannel[] inputChannels = InputChannel.openInputChannelPair(name);
        //服务端InputChannel
        win.setInputChannel(inputChannels[0]);
        //应用客户端InputChannel
        inputChannels[1].transferTo(outInputChannel);    
        mInputManager.registerInputChannel(win.mInputChannel, 
                      win.mInputWindowHandle);
    }
    .....
}

//InputTransport.cpp中

status_t InputChannel::openInputChannelPair(const String8& name,
        sp& outServerChannel, sp& outClientChannel) {
    int sockets[2];
   
    //setsockopt设置socket
    int bufferSize = SOCKET_BUFFER_SIZE;
    setsockopt(sockets[0], SOL_SOCKET, SO_SNDBUF, &bufferSize, sizeof(bufferSize));
    setsockopt(sockets[0], SOL_SOCKET, SO_RCVBUF, &bufferSize, sizeof(bufferSize));
    setsockopt(sockets[1], SOL_SOCKET, SO_SNDBUF, &bufferSize, sizeof(bufferSize));
    setsockopt(sockets[1], SOL_SOCKET, SO_RCVBUF, &bufferSize, sizeof(bufferSize));

    //创建服务端InputChannel
    String8 serverChannelName = name;
    serverChannelName.append(" (server)");
    outServerChannel = new InputChannel(serverChannelName, sockets[0]);

    //创建应用客户端InputChannel
    String8 clientChannelName = name;
    clientChannelName.append(" (client)");
    outClientChannel = new InputChannel(clientChannelName, sockets[1]);
    return OK;
}

调用链如下


应用进程与SystemServer.png

你可能感兴趣的:(Android Input事件系统分析)