人工智能究竟能不能拥有和人一样的“爱”。
看完这本书的我觉得,这种爱,人工智能不应该去渴求拥有。
原题场吧,开赛前就直言不讳说是来自美团的笔试题。
整体还是简单,D这个树形DP不错,可能有段时间没写树形DP题。
简单题,线性遍历即可。
import java.io.BufferedInputStream;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(new BufferedInputStream(System.in));
int n = sc.nextInt();
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = sc.nextInt();
}
int u = sc.nextInt(), v = sc.nextInt();
boolean f = false;
for (int i = 0; !f && i < n - 1; i++) {
if (u == arr[i] && v == arr[i + 1]) {
f = true;
} else if (v == arr[i] && u == arr[i + 1]) {
f = true;
}
}
System.out.println(f ? "Yes" : "No");
}
}
环形结构和距离值,稍微麻烦些
本质就是
min(两点之间的距离,反向两点之间的距离)
利用前缀和进行加速
import java.io.BufferedInputStream;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(new BufferedInputStream(System.in));
int n = sc.nextInt();
long sum = 0;
// 前缀和
long[] prev = new long[n + 1];
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = sc.nextInt();
prev[i + 1] = prev[i] + arr[i];
sum += arr[i];
}
int u = sc.nextInt() - 1, v = sc.nextInt() - 1;
if (u > v) {
// swap
int t = u; u = v; v = t;
}
// 普通区间前缀和
long r1 = prev[v] - prev[u];
// 环形结构(跨1-N)
long r2 = sum - r1;
System.out.println(Math.min(r1, r2));
}
}
就是让最大的和最小的相邻,最大和次大间接相邻,感觉这个构造最使得最大最小差值最小。
即如下构造 1 , n , 2 , n − 1 , 3 , n − 2 , . . . . . 1,n,2,n-1,3,n-2,..... 1,n,2,n−1,3,n−2,.....
import java.io.BufferedInputStream;
import java.util.Arrays;
import java.util.Scanner;
import java.util.stream.Collectors;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(new BufferedInputStream(System.in));
int n = sc.nextInt();
int[] arr = new int[n];
int ptr = 1;
for (int i = 0; i < n; i += 2) {
arr[i] = ptr++;
}
for (int i = n - 1; i >= 0; i--) {
if (arr[i] == 0) {
arr[i] = ptr++;
}
}
System.out.println(Arrays.stream(arr).mapToObj(String::valueOf).collect(Collectors.joining(" ")));
}
}
树形DP的好题
对于每个节点,引入0,1状态(表示不染色,染色)
那每个子树的根节点u, s为u的儿子节点集合
import java.io.BufferedInputStream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Scanner;
public class Main {
static class Solution {
int[] ws;
List<Integer> []g;
int[][] dp;
int solve(int n, int[] ws, List<Integer>[] g) {
this.g = g;
this.dp = new int[n + 1][2];
this.ws = ws;
dfs(1, -1);
return Math.max(dp[1][0], dp[1][1]);
}
void dfs(int u, int fa) {
int[] res = new int[] {0, 0};
for (int v: g[u]) {
if (v == fa) {
continue;
}
dfs(v, u);
res[0] += Math.max(dp[v][0], dp[v][1]);
}
for (int v: g[u]) {
if (v == fa) continue;
int x2 = res[0] - Math.max(dp[v][0], dp[v][1]);
long rr = (long)ws[u] *ws[v];
long r = (long)Math.sqrt(rr);
if (r * r == rr) {
res[1] = Math.max(2 + x2 + dp[v][0], res[1]);
}
}
dp[u][0] = res[0];
dp[u][1] = res[1];
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(new BufferedInputStream(System.in));
int n = sc.nextInt();
int[] ws = new int[n + 1];
for (int i = 1; i <= n ;i++) {
ws[i] = sc.nextInt();
}
List<Integer>[]g = new List[n + 1];
Arrays.setAll(g, x -> new ArrayList<>());
for (int i = 0; i < n - 1; i++) {
int u = sc.nextInt();
int v = sc.nextInt();
g[u].add(v);
g[v].add(u);
}
Solution solution = new Solution();
int res = solution.solve(n, ws, g);
System.out.println(res);
}
}
看到评论区有大佬,提到了这个方法,所以补充一下。
匈牙利算法,其时间复杂度 O ( V ∗ E ) O(V*E) O(V∗E), 树的节点N,边N-1,理论会达到 O ( 1 0 10 ) O(10^{10}) O(1010)。
感觉还是测试数据偏随机,完全平方数限制很强,导致时间复杂度骤降。
import java.io.BufferedInputStream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Scanner;
public class Main {
// 无权二分图最大匹配算法 O(VE)
static boolean match(int u, int[] link, boolean[] used, List<Integer> []g) {
for (int v: g[u]) {
if (used[v]) continue;
used[v] = true;
if (link[v] == 0 || match(link[v], link, used, g)) {
link[u] = v;
link[v] = u;
return true;
}
}
return false;
}
public static void main(String[] args) {
Scanner sc = new Scanner(new BufferedInputStream(System.in));
int n = sc.nextInt();
int[] ws = new int[n + 1];
for (int i = 1; i <= n ;i++) {
ws[i] = sc.nextInt();
}
List<Integer>[]g = new List[n + 1];
Arrays.setAll(g, x -> new ArrayList<>());
for (int i = 0; i < n - 1; i++) {
int u = sc.nextInt();
int v = sc.nextInt();
long rr = (long)ws[u] * ws[v];
long r = (long)Math.sqrt(rr);
if (r * r == rr) {
g[u].add(v);
g[v].add(u);
}
}
int ans = 0;
int[] link = new int[n + 1];
for (int i = 1; i <= n; i++) {
if (link[i] != 0) continue;
boolean[] used = new boolean[n + 1];
used[i] = true;
if (match(i, link, used, g)) {
// 找到一条增广路径
ans++;
}
}
System.out.println(ans * 2);
}
}
注:记得替换快读快写.
不是因为这种"爱"太伟大,而是这种"爱"不配。