a.shape=(3,2);既数组h=3,w=2
a.shape=(2,3,2);这里第一个2表示axis=0维度上的,三维数组中3,2)数组的个数,这里表示两个(3,2)数组。
numpy.squeeze()函数。
语法:numpy.squeeze(a,axis = None);作用是将shape维度为1的去掉,但通常我们会指定axis=0,去除batchsize的维度。
a.dtype = ‘float32’
>>> a = np.random.random(4)
>>> a
array([ 0.0945377 , 0.52199916, 0.62490646, 0.21260126])
>>> a.dtype
dtype('float64')
>>> a.shape
(4,)
>>> a.dtype = 'float32'
>>> a
array([ 3.65532693e+20, 1.43907535e+00, -3.31994873e-25,
1.75549972e+00, -2.75686653e+14, 1.78122652e+00,
-1.03207532e-19, 1.58760118e+00], dtype=float32)
>>> a.shape
(8,)
假设C为三维数组
A = C.flatten()
a = np.arange(8)
a
array([0, 1, 2, 3, 4, 5, 6, 7])
np.where(a>4)
(array([5, 6, 7], dtype=int64),)
b = np.arange(4*5).reshape(4,5)
b
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])
np.where(b>14)
(array([3, 3, 3, 3, 3], dtype=int64), array([0, 1, 2, 3, 4], dtype=int64))
作用:在axis方向上找最大值的坐标。
np.hstack h-horizontal 水平方向拼接
np.hstack(array1,array2)
np.vstack vertical 竖直方向拼接
np.vstack(array1,array2)
# 以下是常用的两种类型
b = np.zeros(a.shape,dtype='float32')
dtype = np.int
dtype = 'int8'