- 多模态大模型的技术应用与未来展望:重构AI交互范式的新引擎
zhaoyi_he
重构人工智能
一、引言:为什么多模态是AI发展的下一场革命?过去十年,深度学习推动了计算机视觉和自然语言处理的飞跃,但两者的发展路径长期割裂。随着生成式AI和大模型时代的到来,**多模态大模型(MultimodalFoundationModels)**以统一的建模方式处理图像、文本、音频、视频等多源数据,重塑了“感知-认知-决策”链条,为AGI迈出关键一步。OpenAI的GPT-4o、Google的Gemini
- 大语言模型应用指南:ReAct 框架
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
大语言模型应用指南:ReAct框架关键词:大语言模型,ReAct框架,自然语言处理(NLP),模型融合,多模态学习,深度学习,深度学习框架1.背景介绍1.1问题由来近年来,深度学习技术在自然语言处理(NLP)领域取得了显著进展。尤其是大语言模型(LargeLanguageModels,LLMs),如BERT、GPT系列等,通过在大规模无标签数据上进行预训练,获得了强大的语言理解和生成能力。然而,预
- 大语言模型原理基础与前沿 基于语言反馈进行微调
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿基于语言反馈进行微调作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进展。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等在各项NLP任务上取得了令人瞩目的成绩。然而,如何进一步提高大语言模型的理
- Assistant API的原理及应用
赛丽曼
人工智能chatgpt
什么是AssistantsAPI?**发布日期:**2023年11月6日,OpenAI在开发者大会上发布了AssistantsAPI——一款面向开发者的工具,用于在应用中构建AI助手。✅它可以做什么?AssistantsAPI允许开发者构建智能助手,这些助手可通过:instructions(指令):设定助手行为;models(模型):指定使用的GPT模型;tools(工具):调用代码解释器、知识库
- Django5.1(91)—— 如何删除一个 Django 应用
小天的铁蛋儿
djangoPythondjangopython后端
如何删除一个Django应用Django提供了将一组功能组织成名为应用程序的Python包的能力。当需求发生变化时,应用程序可能会变得过时或不再需要。以下步骤将帮助你安全地删除一个应用程序。删除所有与该应用程序相关的引用(导入、外键等)。从相应的models.py文件中删除所有模型。通过运行makemigrations来创建相关的迁移。这一步会生成一个迁移,用于删除已删除模型的表,以及与这些模型相
- CppCon 2018 学习:RAPID PROTOTYPING OF GRAPHICS SHADERS IN
虾球xz
CppCon学习c++开发语言
这段内容在讲**着色器(Shader)**的基础概念,尤其是它在现代GPU(图形处理单元)中的作用。以下是逐条解释与理解:“Depictingdepthperceptionin3Dmodelsorillustrationsbyvaryinglevelsofdarkness”—Wikipedia这是**光照/阴影(shading)**的定义,来自维基百科。意思是:为了在二维图像中表现三维感,我们通过
- 核心骨架: 小程序双线程架构
风铃喵游
从零搭建小程序框架架构小程序架构前端
本节简介从本小节开始,我们将实现小程序架构的核心逻辑:双线程架构,开始之前我们先简单介绍下双线程架构以及选择双线程架构的原因;小程序在渲染过程中,将逻辑代码的执行和页面逻辑的渲染分割开,各自独立在一个线程内运行,及小程序的双线程运行架构;采用双线程运行的小程序的优势主要有:JS逻辑的独立运行不会影响UI的渲染,性能更优安全性:JS逻辑独立运行,避免利用一些浏览器api操作DOM,执行动态脚本等,方
- 使用Qwen2.5-Max大模型
海青橘
散记人工智能
要使用Qwen2.5-Max,您可以按照以下步骤操作:建议使用第二种方法1.通过阿里云百炼平台调用APIQwen2.5-Max已在阿里云百炼平台上架。您可以通过阿里云的生成式AI开发平台ModelStudio访问并调用Qwen2.5-Max的API服务。步骤:登录阿里云官网(https://www.alibabacloud.com)。进入“模型开发”或“ModelStudio”页面。找到Qwen2
- Day51 复习日-模型改进
cylat
python打卡机器学习人工智能python神经网络深度学习
day43对自己找的数据集用简单cnn训练,现在用预训练,加入注意力等importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportdatasets,transforms,modelsfromtorch.utils.dataimportDataLoader,random_splitimportmatplotlib
- 【机器学习|学习笔记】类别特征(Categorical Features)处理方法,附代码。
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记神经网络人工智能深度学习
【机器学习|学习笔记】类别特征(CategoricalFeatures)处理方法,附代码。【机器学习|学习笔记】类别特征(CategoricalFeatures)处理方法,附代码。文章目录【机器学习|学习笔记】类别特征(CategoricalFeatures)处理方法,附代码。前言✅为什么要处理类别特征?原因1:大多数模型不能处理字符串原因2:避免“错误的顺序假设”原因3:方便模型泛化与特征交互✅
- yolo11官方ONNXRuntime部署推理的脚本测试,包括检测模型和分割模型的部署推理
Revao
YOLOpython
一、检测模型1.脚本路径:D:/ultralytics-main/examples/YOLOv8-ONNXRuntime/main.py2.使用案例下载好onnx模型保存至D:/ultralytics-main/models目录下,没有该目录则新建打开终端,进入虚拟环境以yolov8n.onnx模型为例,输入以下指令即可pythonD:/ultralytics-main/examples/YOLO
- YOLOv7 技术详解(Real-Time Dynamic Label Assignment + Model Scaling)
要努力啊啊啊
计算机视觉YOLO人工智能深度学习计算机视觉目标跟踪
✅YOLOv7技术详解(Real-TimeDynamicLabelAssignment+ModelScaling)一、前言YOLOv7是AlexeyBochkovskiy团队后续维护者提出的一种高性能目标检测模型,在YOLOv5基础上引入了多项结构优化和训练策略改进:✅模型集成(ModelIntegration)✅动态标签分配(ExtendAssigner)✅支持重参数化模块(ReparamBlo
- python打卡day52@浙大疏锦行
风逸hhh
python打卡60天行动python深度学习机器学习
知识点回顾:随机种子内参的初始化神经网络调参指南参数的分类调参的顺序各部分参数的调整心得神经网络调参核心实践一、全局随机种子设置(修改src/models/train.py)defset_seed(seed=42):torch.manual_seed(seed)torch.cuda.manual_seed_all(seed)np.random.seed(seed)random.seed(seed)
- day 58 python打卡
作业:对太阳黑子数量数据集用arima完成流程1.导入原始数据,并可视化#导入必要的库importpandasaspdimportmatplotlib.pyplotaspltfromstatsmodels.tsa.stattoolsimportadfullerfromstatsmodels.graphics.tsaplotsimportplot_acf,plot_pacffromstatsmode
- 大语言模型应用指南:谷歌 Gemini 简介
AI天才研究院
AI大模型企业级应用开发实战AI人工智能与大数据计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:谷歌Gemini简介关键词:大语言模型,Gemini,谷歌,人工智能,应用指南1.背景介绍近年来,人工智能领域取得了突破性进展,尤其是大语言模型(LargeLanguageModels,LLMs)的出现,彻底改变了我们与信息交互的方式。从最初的聊天机器人到如今的代码生成、文本创作等领域,LLMs展现出惊人的能力。谷歌作为科技巨头,一直走在人工智能研究的前沿。继BERT、LaMD
- Laravel路由模型绑定
Laravel路由模型绑定路由模型绑定我们在使用路由的时候一个很常见的使用场景就是根据资源ID查询资源信息:Route::get('task/{id}',function($id){$task=\App\Models\Task::findOrFail($id);});Laravel提供了一个「路由模型绑定」功能来简化上述代码编写,通过路由模型绑定,我们只需要定义一个特殊约定的参数名(比如{task
- LLM归因的几种评估方式
liliangcsdn
深度学习人工智能语言模型算法
参考ASurveyofLargeLanguageModelsAttribution,LLM归因有以下几种有效的评估方式。1人工评估归因错误的检测难度大,所以评估主要依赖人工评价进行归因检测。人工评估虽然精度高,但成本高也耗时。标注过程中还需要标注员谨慎对待,而且需要手工验证。为提高可靠性,针对一个(问题,答案,归因文本),可能需要多个标注员同时进行标注,只有大部分人认为正确归因,该(问题,答案,归
- LLM归因的限制和挑战
LLM归因虽然能提升任务性能和模型的可解释性,但面临多个方面的限制。参考ASurveyofLargeLanguageModelsAttribution,LLM归因的限制和挑战总结如下1)难以确定何时以及如何进行归因LLM区分一般知识(可能不需要引文)和专业知识(需要归因)是一项微妙的任务,难以达成一致。2)归因的准确性无法得到保证LLM可能会将生成的答案和不相关或错误的来源关联起来,这种错误归因可
- MIT 6.S184 Lec01 Flow and Diffusion Models
克斯维尔的明天_
机器学习人工智能
MIT6.S184Lec01FlowandDiffusionModels本节中,我们将描述如何通过模拟一个适当构造的微分方程来获得所需的转换。例如,流匹配和扩散模型分别涉及模拟常微分方程(ODE)和随机微分方程(SDE)。因此,本节的目标是定义和构建这些生成模型。具体来说,我们首先定义ODE和SDE,并讨论它们的模拟。其次,我们描述如何使用深度神经网络对ODE/SDE进行参数化。从中推导出流模型和
- 【YOLOv11】ultralytics最新作品yolov11 AND 模型的训练、推理、验证、导出 以及 使用
Jackilina_Stone
#DeepLearning【改进】YOLO系列YOLO人工智能python计算机视觉深度学习
目录一ultralytics公司的最新作品YOLOV111yolov11的创新2安装YOLOv113PYTHONGuide二训练三验证四推理五导出模型六使用文档:https://docs.ultralytics.com/models/yolo11/代码链接:https://github.com/ultralytics/ultralyticsPerformanceMetrics
- 提示词工程推荐阅读论文
司南锤
LLMprompt人工智能自然语言处理
论文目录提示工程少样本提示思维链提示自洽性生成知识提示自动提示工程多模态提示提示技巧对抗提示提示工程PromptEngineeringforText-BasedGenerativeModels论文链接:https://arxiv.org/abs/2107.13586简介:本文概述了提示工程,并讨论了它在各种基于文本的生成模型中的应用。少样本提示Few-shotLearningwithRetriev
- AtomNet:在极端MCU约束下基于算子设计微型模型
神一样的老师
论文阅读分享单片机struts嵌入式硬件
英文标题:AtomNet:DesigningTinyModelsfromOperatorsUnderExtremeMCUConstraints中文标题:AtomNet:在极端MCU约束下基于算子设计微型模型作者信息ZhiweiDong1,3,MingzhuShen3,ShihaoBai3,XiuyingWei3,JinyangGuo2,RuihaoGong2,3,Song-LuChen1,Xian
- 【大模型学习 | BLIP2原理】
九年义务漏网鲨鱼
人工智能深度学习语言模型多模态大模型
BLIP-2:BootstrappingLanguage-ImagePre-trainingwithFrozenImageEncodersandLargeLanguageModels目前(2023)的图文模型都是基于端到端训练方式,大规模的模型和数据集导致了在预训练过程需要的大量计算。作者提出一种从离线、梯度冻结的图像、语言模型中提升图文的预训练模型。为了联系两个不同模态预训练模型,作者提出一种使
- 无需多卡集群,单卡运行扩散模型的技术突破与实践
源客z
stablediffusion
近年来,扩散模型(DiffusionModels)在图像、视频、3D生成等领域取得巨大进展。然而,传统扩散模型往往依赖多卡集群(如8×A100)进行高效训练与推理,这使得个人开发者和中小团队的应用受限。幸运的是,随着模型架构优化、量化技术、推理加速方案的发展,越来越多的开源扩散模型可以在单张消费级显卡(如RTX4090、T4、A6000)上运行,并且性能接近或超越原生大规模模型。本文整理了当前可在
- 本地部署ComfyUI,使用FLUX模型相关的配置以及软链接的使用
九河_
linuxComfyUIflux
记录本地部署ComfyUI时,使用FLUX模型相关的配置,包括FLUX模型的下载位置和使用软链接。参考资料:Flux.1ComfyUI对应模型安装及教程指南上面的网站还讲了非常多的ComfyUI以及其他模型,非常好的资料。FLUX.1dev下载网站:black-forest-labsflux1-dev.safetensors是UNET模型,需要放在ComfyUI/models/unet目录下如果从
- Dimba: Transformer-Mamba Diffusion Models————3 Methodology
图解图片中的每个模块详解1.文本输入(Text)描述:输入的文本描述了一个具有具体特征的场景。功能:提供关于要生成图像的详细信息。2.T5模型(TexttoFeature)描述:使用T5模型将文本转换为特征向量。功能:提取文本中的语义信息,为后续的图像生成提供条件。3.图像输入(Image)描述:输入图像通过变分自编码器(VAE)编码器处理。功能:将图像转换为潜在表示,用于添加噪声并进行扩散过程。
- Panda3D实战:从入门到精通
KENYCHEN奉孝
python实践大全python开发语言c++
Panda3D基础实例创建一个简单的Panda3D场景,加载一个模型并显示:fromdirect.showbase.ShowBaseimportShowBaseclassMyApp(ShowBase):def__init__(self):ShowBase.__init__(self)self.scene=self.loader.loadModel("models/environment")self
- 【LangChain编程:从入门到实践】AI 大模型检索增强生成 RAG 实践
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LangChain编程:从入门到实践-AI大模型检索增强生成RAG实践关键词:LangChain,RAG,大语言模型,检索增强生成,向量数据库,嵌入模型,提示工程1.背景介绍在人工智能和自然语言处理领域,大语言模型(LargeLanguageModels,LLMs)的出现无疑是一个重大突破。像GPT-3、GPT-4这样的模型展现出了惊人的语言理解和生成能力,为各种应用场景带来了无限可能。然而,这些
- 【Actix Web】构建高性能 Rust API:Actix Web 最佳实践与进阶指南
LCG元
前端前端rust开发语言
目录一、高性能API架构设计1.1系统架构图1.2核心组件二、项目初始化与配置2.1创建项目2.2添加依赖(Cargo.toml)2.3配置文件(config/default.toml)三、核心模块实现3.1应用状态管理(src/state.rs)3.2数据模型定义(src/models.rs)四、认证与授权系统4.1JWT认证流程4.2JWT工具函数(src/utils/jwt.rs)4.3认证
- 探索 AI 系统提示与模型资源库:`system-prompts-and-models-of-ai-tools`
几道之旅
人工智能智能体及数字员工人工智能
在当今的人工智能领域,系统提示和工具模型的优化与应用对于提升AI助手的性能和响应质量至关重要。x1xhlol开源的system-prompts-and-models-of-ai-tools仓库为开发者们提供了一个丰富的资源集合,涵盖了多种AI工具的系统提示、工具和模型。仓库概述这个仓库包含了超过7500行的代码和文档,详细介绍了多个知名AI工具的系统提示和相关模型,其中包括FULLv0、Curso
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。