可以看到 Transformer 由 Encoder 和 Decoder 两个部分组成,Encoder 和 Decoder 都包含 6 个 block。Transformer 的工作流程大体如下:
第一步:获取输入句子的每一个单词的表示向量 X,X由单词的 Embedding(Embedding就是从原始数据提取出来的Feature) 和单词位置的 Embedding 相加得到。
第二步:将得到的单词表示向量矩阵 (如上图所示,每一行是一个单词的表示 x) 传入 Encoder 中,经过 6 个 Encoder block 后可以得到句子所有单词的编码信息矩阵 C,如下图。单词向量矩阵用 X n × d X_{n×d} Xn×d表示, n 是句子中单词个数,d 是表示向量的维度 (论文中 d=512)。每一个 Encoder block 输出的矩阵维度与输入完全一致。
第三步:将 Encoder 输出的编码信息矩阵 C传递到 Decoder 中,Decoder 依次会根据当前翻译过的单词 1~ i 翻译下一个单词 i+1,如下图所示。在使用的过程中,翻译到单词 i+1 的时候需要通过 Mask (掩盖) 操作遮盖住 i+1 之后的单词。
上图 Decoder 接收了 Encoder 的编码矩阵 C,然后首先输入一个翻译开始符 “”,预测第一个单词 “I”;然后输入翻译开始符 “” 和单词 “I”,预测单词 “have”,以此类推。这是 Transformer 使用时候的大致流程,接下来是里面各个部分的细节。
单词的 Embedding 有很多种方式可以获取,例如可以采用 Word2Vec、Glove 等算法预训练得到,也可以在 Transformer 中训练得到。
Transformer 中除了单词的 Embedding,还需要使用位置 Embedding 表示单词出现在句子中的位置。因为Transformer 不采用 RNN 的结构,而是使用全局信息,不能利用单词的顺序信息,而这部分信息对于 NLP 来说非常重要。所以 Transformer 中使用位置 Embedding 保存单词在序列中的相对或绝对位置。位置 Embedding 用 PE表示,PE 的维度与单词 Embedding 是一样的。PE 可以通过训练得到,也可以使用某种公式计算得到。在 Transformer 中采用了后者,计算公式如下:
P E ( p o s , 2 i ) = sin ( p o s 1000 0 2 i / d ) P E ( p o s , 2 i + 1 ) = cos ( p o s 1000 0 2 i / d ) \begin{aligned}&\mathrm{PE}_{(pos,2i)}=\sin\left(\frac{pos}{10000^{2i/d}}\right)\\&\mathrm{PE}_{(pos,2i+1)}=\cos\left(\frac{pos}{10000^{2i/d}}\right)\end{aligned} PE(pos,2i)=sin(100002i/dpos)PE(pos,2i+1)=cos(100002i/dpos)
其中,pos 表示单词在句子中的位置,d 表示 PE的维度 (与词 Embedding 一样),2i 表示偶数的维度,2i+1 表示奇数维度 (即 2i≤d, 2i+1≤d)。使用这种公式计算 PE 有以下的好处:
将单词的词 Embedding 和位置 Embedding 相加,就可以得到单词的表示向量 x,x 就是 Transformer 的输入。
上图是论文中 Transformer 的内部结构图,左侧为 Encoder block,右侧为 Decoder block。红色圈中的部分为 Multi-Head Attention,是由多个 Self-Attention组成的,可以看到 Encoder block 包含一个 Multi-Head Attention,而 Decoder block 包含两个 Multi-Head Attention (其中有一个用到 Masked)。Multi-Head Attention 上方还包括一个 Add & Norm 层,Add 表示残差连接 (Residual Connection) 用于防止网络退化,Norm 表示 Layer Normalization,用于对每一层的激活值进行归一化。
因为 Self-Attention是 Transformer 的重点,所以我们重点关注 Multi-Head Attention 以及 Self-Attention,首先详细了解一下 Self-Attention 的内部逻辑。
下图是 Self-Attention 的结构,在计算的时候需要用到矩阵Q(查询),K(键值),V(值)。在实际中,Self-Attention 接收的是输入(单词的表示向量x组成的矩阵X) 或者上一个 Encoder block 的输出。而Q,K,V正是通过 Self-Attention 的输入进行线性变换得到的。
Self-Attention 的输入用矩阵X进行表示,则可以使用线性变阵矩阵 W Q , W K , W V W_Q,W_K,W_V WQ,WK,WV计算得到Q,K,V。计算如下图所示,注意 X, Q, K, V 的每一行都表示一个单词。
得到矩阵 Q, K, V之后就可以计算出 Self-Attention 的输出了,计算的公式如下:
A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V \mathrm{Attention}(Q,K,V)=\mathrm{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dkQKT)V
d k d_k dk是 Q , K Q,K Q,K矩阵的列数,即向量维度,公式中计算矩阵Q和K每一行向量的内积,为了防止内积过大,因此除以 d k d_k dk的平方根。Q乘以K的转置后,得到的矩阵行列数都为 n,n 为句子单词数,这个矩阵可以表示单词之间的 attention 强度。下图为Q乘以 K T K^T KT,1234 表示的是句子中的单词。
得到 Q K T QK^T QKT 之后,使用 Softmax 计算每一个单词对于其他单词的 attention 系数,公式中的 Softmax 是对矩阵的每一行进行 Softmax,即每一行的和都变为 1。对于每一行的向量 z = ( z 1 , z 2 , . . . , z k ) z=(z_1,z_2,...,z_k) z=(z1,z2,...,zk),softmax计算如下:
Softmax ( z ) i = e z i / τ ∑ j = 1 k e z j / τ , f o r i = 1 , 2 , . . . , k \operatorname{Softmax}(z)_i=\frac{e^{z_i/\tau}}{\sum_{j=1}^ke^{z_j/\tau}},\quad\mathrm{~for~}i=1,2,...,k Softmax(z)i=∑j=1kezj/τezi/τ, for i=1,2,...,k
τ \tau τ是温度参数,原论文设置为1,当 τ \tau τ较大时,Softmax 函数输出的概率分布更趋向于均匀分布,因为指数函数的输出更接近原始输入的比例。而当 τ \tau τ较小时,Softmax 函数输出的概率分布更趋向于对最大输入的强调,即更集中在最大输入对应的类别上。这个温度参数可以控制 softmax 操作的输出分布的 “平滑度”,调整模型对不同位置的关注程度。得到 Softmax 矩阵之后可以和V相乘,得到最终的输出Z。
上图中 Softmax 矩阵的第 1 行表示单词 1 与其他所有单词的 attention 系数,最终单词 1 的输出 Z 1 Z_1 Z1等于所有单词 i 的值 V i V_i Vi根据 attention 系数的比例加在一起得到,如下图所示:
在上一步,我们已经知道怎么通过 Self-Attention 计算得到输出矩阵 Z,而 Multi-Head Attention 是由多个 Self-Attention 组合形成的,下图是论文中 Multi-Head Attention 的结构图。
从上图可以看到 Multi-Head Attention 包含多个 Self-Attention 层,首先将输入X分别传递到 h 个不同的 Self-Attention 中,计算得到 h 个输出矩阵Z。下图是 h=8 时候的情况,此时会得到 8 个输出矩阵Z。
得到 8 个输出矩阵 Z 1 Z_1 Z1 Z 8 Z_8 Z8 之后,Multi-Head Attention 将它们拼接在一起 (Concat),然后传入一个Linear层,得到 Multi-Head Attention 最终的输出Z。可以看到 Multi-Head Attention 输出的矩阵Z与其输入的矩阵X的维度是一样的。
上图红色部分是 Transformer 的 Encoder block 结构,可以看到是由 Multi-Head Attention, Add & Norm, Feed Forward, Add & Norm 组成的。刚刚已经了解了 Multi-Head Attention 的计算过程,现在了解一下 Add & Norm 和 Feed Forward 部分。
Add & Norm 层由 Add 和 Norm 两部分组成,其计算公式如下:
L a y e r N o r m ( X + M u l t i H e a d A t t e n t i o n ( X ) ) L a y e r N o r m ( X + F e e d F o r w a r d ( X ) ) \begin{aligned}\mathrm{LayerNorm}&\big(X+\mathrm{MultiHeadAttention}(X)\big)\\\mathrm{LayerNorm}&\big(X+\mathrm{FeedForward}(X)\big)\end{aligned} LayerNormLayerNorm(X+MultiHeadAttention(X))(X+FeedForward(X))
其中 X表示 Multi-Head Attention 或者 Feed Forward 的输入,MultiHeadAttention(X) 和 FeedForward(X) 表示输出 (输出与输入 X 维度是一样的,所以可以相加)。Add指 X+MultiHeadAttention(X),是一种残差连接,通常用于解决多层网络训练的问题,可以让网络只关注当前差异的部分,在 ResNet 中经常用到:
Norm指 Layer Normalization,通常用于 RNN 结构,Layer Normalization 会将每一层神经元的输入都转成均值方差都一样的,这样可以加快收敛。
Feed Forward 层比较简单,是一个两层的全连接层,第一层的激活函数为 Relu,第二层不使用激活函数,对应的公式如下 m a x ( 0 , X W 1 + b 1 ) W 2 + b 2 max(0,XW_1+b_1)W_2+b_2 max(0,XW1+b1)W2+b2
X是输入,Feed Forward 最终得到的输出矩阵的维度与X一致。
通过上面描述的 Multi-Head Attention, Feed Forward, Add & Norm 就可以构造出一个 Encoder block,Encoder block 接收输入矩阵 ,并输出一个矩阵 。通过多个 Encoder block 叠加就可以组成 Encoder。
第一个 Encoder block 的输入为句子单词的表示向量矩阵,后续 Encoder block 的输入是前一个 Encoder block 的输出,最后一个 Encoder block 输出的矩阵就是编码信息矩阵 C,这一矩阵后续会用到 Decoder 中。
上图红色部分为Transformer 的 Decoder block 结构,与 Encoder block 相似,但是存在一些区别:
Decoder block 的第一个 Multi-Head Attention 采用了 Masked 操作,因为在翻译的过程中是顺序翻译的,即翻译完第 i 个单词,才可以翻译第 i+1 个单词。通过 Masked 操作可以防止第 i 个单词知道 i+1 个单词之后的信息。下面以 “我有一只猫” 翻译成 “I have a cat” 为例,了解一下 Masked 操作。
下面的描述中使用了类似 Teacher Forcing 的概念,在 Decoder 的时候,是需要根据之前的翻译,求解当前最有可能的翻译,如下图所示。首先根据输入 “” 预测出第一个单词为 “I”,然后根据输入 “ I” 预测下一个单词 “have”。
Decoder 可以在训练的过程中使用 Teacher Forcing 并且并行化训练,即将正确的单词序列 ( I have a cat) 和对应输出 (I have a cat ) 传递到 Decoder。那么在预测第 i 个输出时,就要将第 i+1 之后的单词掩盖住,注意 Mask 操作是在 Self-Attention 的 Softmax 之前使用的,下面用 0 1 2 3 4 5 分别表示 “ I have a cat ”。
第一步:是 Decoder 的输入矩阵和 Mask 矩阵,输入矩阵包含 “ I have a cat” (0, 1, 2, 3, 4) 五个单词的表示向量,Mask 是一个 5×5 的矩阵。在 Mask 可以发现单词 0 只能使用单词 0 的信息,而单词 1 可以使用单词 0, 1 的信息,即只能使用之前的信息。
第二步:接下来的操作和之前的 Self-Attention 一样,通过输入矩阵X计算得到Q,K,V矩阵。然后计算Q和 K T K^T KT 的乘积 Q K T QK^T QKT。
第三步:在得到 Q K T QK^T QKT之后需要进行 Softmax,计算 attention score,我们在 Softmax 之前需要使用Mask矩阵遮挡住每一个单词之后的信息,遮挡操作如下,注意是按位相乘:
Softmax 之前 Mask:得到 Mask之后在 Mask上进行 Softmax,每一行的和都为 1。但是单词 0 在单词 1, 2, 3, 4 上的 attention score 都为 0。
第四步:使用 Mask Q K T QK^T QKT与矩阵 V相乘,得到输出 Z,则单词 1 的输出向量 Z 1 Z_1 Z1是只包含单词 1 信息的。
第五步:通过上述步骤就可以得到一个 Mask Self-Attention 的输出矩阵,然后和 Encoder 类似,通过 Multi-Head Attention 拼接多个输出,然后计算得到第一个 Multi-Head Attention 的输出Z,Z与输入X维度一样。
Decoder block 第二个 Multi-Head Attention 变化不大, 主要的区别在于其中 Self-Attention 的 K, V矩阵不是使用 上一个 Decoder block 的输出计算的,而是使用 Encoder 的编码信息矩阵 C 计算的。
根据 Encoder 的输出 C计算得到 K, V,根据上一个 Decoder block 的输出 Z 计算 Q (如果是第一个 Decoder block 则使用输入矩阵 X 进行计算),后续的计算方法与之前描述的一致。
这样做的好处是在 Decoder 的时候,每一位单词都可以利用到 Encoder 所有单词的信息 (这些信息无需 Mask)。
Decoder block 最后的部分是利用 Softmax 预测下一个单词,在之前的网络层我们可以得到一个最终的输出 Z,因为 Mask 的存在,使得单词 0 的输出 Z 0 Z_0 Z0 只包含单词 0 的信息,如下:
Softmax 根据输出矩阵的每一行预测下一个单词:
这就是 Decoder block 的定义,与 Encoder 一样,Decoder 是由多个 Decoder block 组合而成。
Transformer 与 RNN 不同,可以比较好地并行训练。
Transformer 本身是不能利用单词的顺序信息的,因此需要在输入中添加位置 Embedding,否则 Transformer 就是一个词袋模型了。
Transformer 的重点是 Self-Attention 结构,其中用到的 Q, K, V矩阵通过输出进行线性变换得到。
Transformer 中 Multi-Head Attention 中有多个 Self-Attention,可以捕获单词之间多种维度上的相关系数 attention score。
Transformer 模型的详细数学表述涉及编码器(Encoder)和解码器(Decoder)两个主要组件。以下是它们的数学表达:
编码器(Encoder):
解码器:
解码器(Decoder):
解码器的数学表达与编码器类似,但有一些区别: