- Llama3.1是AI界的Linux?先部署起来再说!
AI大模型探索者
人工智能linux运维语言模型aiLLamallama
前言就在昨天,Meta发布了Llama3.1,这次带来的中杯、大杯和超大杯3个版本。从纸面数据来看,Llama3.1超大杯已经能跟GPT-4Omni、Claude3.5Sonnet分庭抗礼了。而中杯和大杯更是将同量级的对手摁在地上摩擦。要知道,Llama的对手可是闭源模型啊工友们!小扎同志说,开源AI会成为行业的标准,就像Linux一样!不管怎么说,既然你开源了,那我就在本地部署起来吧。本文使用O
- 使用LangChain访问个人数据第一章-简介
明志刘明
大模型学习手册langchain
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统需要学习LangChian开发的同学请查看基于LangChain开发应用程序正文在大数据时代,数据价值逐渐凸显,打造定制化、个性化服务,个人数据尤为重要。要开发一个具备较强服务能力、能够充分展现个性化智能的应用程序,大模型与个人数据的对齐是一个重要步骤。作为针对大模型开发应运而生的框
- 使用LangChain访问个人数据第八章-总结
明志刘明
大模型学习手册langchain人工智能
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统需要学习LangChian开发的同学请查看基于LangChain开发应用程序本部分前几个章节请查看使用LangChain访问个人数据第一章-简介使用LangChain访问个人数据第二章-文档加载使用LangChain访问个人数据第三章-文档分割使用LangChain访问个人数据第四章
- 基于 LangChain 开发应用程序第一章-简介
明志刘明
大模型学习手册langchain人工智能
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统本部分章节目录如下:基于LangChain开发应用程序第一章-简介基于LangChain开发应用程序第二章-提示和输出基于LangChain开发应用程序第三章-储存基于LangChain开发应用程序第四章-模型链基于LangChain开发应用程序第五章-基于文档的问答基于LangCh
- 【Hugging Face】transformers 库中 model.generate() 方法:自回归模型的文本生成方法
彬彬侠
HuggingFacemodel.generatetransformersHuggingFace文本生成自回归模型GPTLLAMA
HuggingFacemodel.generate方法model.generate是transformers库中的文本生成(TextGeneration)方法,适用于自回归模型(如GPT-2、T5、BART、LLAMA),用于生成文本、摘要、翻译、问答等。1.适用于哪些模型?generate适用于基于Transformer生成文本的模型,例如:GPT-2(AutoModelForCausalLM)
- 大语言模型原理基础与前沿 双层路由多模态融合、多任务学习和模块化架构
AI智能涌现深度研究
AI大语言模型和知识图谱融合Python入门实战DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿:双层路由多模态融合、多任务学习和模块化架构关键词:大语言模型、双层路由、多模态融合、多任务学习、模块化架构、神经网络、自然语言处理1.背景介绍大语言模型(LargeLanguageModels,LLMs)已经成为人工智能和自然语言处理领域的重要研究方向。随着GPT-3、BERT等模型的出现,大语言模型在各种任务中展现出了惊人的性能。然而,随着模型规模的不断扩大和应用场景的
- 大模型GPT辅助学习解释代码-HttpSession 监听器
ahauedu
前沿技术与趋势gpt
本文主题大模型解释代码。最近在接触旧项目代码是往往没有注释,或者是注释和代码对应不上,这样对于了解业务逻辑,以及后期的改造开发造成了很大的困扰。尽然大模型这么强大,我们尝试下用大模型来解释代码。以下是大模型对项目代码中的HttpSession监听器的代码解释,很高效的方式,可以借鉴。代码解析这段代码定义了WebHttpSessionListener类,它是一个HttpSession监听器,用于监听
- 【大模型开发】大模型背后的基础组件与生态概览
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习大模型技术开发与实践大模型开发HuggingFaceDeepSpeed大模型生态机器学习深度学习大模型技术栈
支撑大模型开发与部署的关键组件与生态系统当今大模型(LLM,LargeLanguageModel)在工业与学术界的应用日益广泛,从ChatGPT、BERT到DeepSeek等新兴模型,背后离不开一整套成熟的技术生态和工具链支持。本文将介绍其中几大核心组件和框架,包括HuggingFaceTransformers、DeepSpeed、Megatron-LM,以及其他相关工具和方法,展示它们在训练效率
- 领域大模型之微调技术和最佳实践
程序员莫玛
人工智能深度学习语言模型金融
BERT和GPT-3等语言模型针对语言任务进行了预训练。微调使它们适应特定领域,如营销、医疗保健、金融。在本指南中,您将了解LLM架构、微调过程以及如何为NLP任务微调自己的预训练模型。-介绍-大型语言模型(LLM)的特别之处可以概括为两个关键词——大型和通用。“大”是指它们训练的海量数据集及其参数的大小,即模型在训练过程中学习的记忆和知识;“通用”意味着他们具有广泛的语言任务能力。更明确地说,L
- 我与DeepSeek的深度实践:重新定义智能编程的边界
一叶孤舟111
python人工智能
引言:从质疑到依赖的认知跃迁在ChatGPT掀起AI编程革命之初,我曾对代码生成工具持保留态度。直到2023年接触DeepSeek,这个来自中国的AI编程助手彻底改变了我的开发模式。经过200+小时的深度使用,我在实际项目中验证了其惊人潜力,本文将分享最具实践价值的经验总结。一、效率革命:实测数据背后的生产力跃升1.1代码生成效率对比任务类型传统耗时DeepSeek耗时准确率CRUD接口开发2.5
- 如何对大模型进行微调?从原理到实战全解析
挣扎与觉醒中的技术人
人工智能外包转型集成学习chatgptgpt-3软件工程
随着大语言模型(LLM)的快速发展,微调(Fine-tuning)已成为将通用模型转化为垂直领域专家的核心技术。本文将从原理、方法到实战步骤,结合OpenAI、HuggingFace等平台的最佳实践,详解大模型微调全流程。文末附赠独家资料包,助你快速上手!一、什么是大模型微调?微调指在预训练大模型(如GPT-3.5、LLaMA)的基础上,使用特定领域的数据进行二次训练,使模型适应新任务或领域需求。
- 《ChatGPT Prompt Engineering for Developers》课程-提示词原则
evil-tomato
LLMchatgpt人工智能pythonai
编写Prompt的原则本章的主要内容为编写Prompt的原则,在本章中,我们将给出两个编写Prompt的原则与一些相关的策略,你将练习基于这两个原则来编写有效的Prompt,从而便捷而有效地使用LLM。一、环境配置本教程使用OpenAI所开放的ChatGPTAPI,因此你需要首先拥有一个ChatGPT的API_KEY(也可以直接访问官方网址在线测试),然后需要安装openai的第三方库首先需要安装
- AI Prompt 提示词工程入门指南:新手小白快速上手
机器学习司猫白
人工智能prompt
近年来,人工智能(AI)发展迅猛,特别是大语言模型(LLMs)(如ChatGPT、Claude、Gemini、Llama等)的广泛应用,让人们可以用自然语言与AI进行互动。而提示词工程(PromptEngineering),即如何设计有效的提示词,已经成为一项重要技能。本篇博客专为新手小白打造,帮助你快速掌握Prompt工程的基础,学会如何撰写高质量的提示词,让AI更精准地理解你的需求,并产出最优
- 清华、北大DeepSeek使用手册:8本,698页大合集
2501_90850576
人工智能pdf
链接:https://pan.quark.cn/s/79b8b14e2c56以前看了很多教程,都感觉特别花哨,没啥干货,大部分就是把GPT的说明书稍微改改,就拿来用在DeepSeek上了,没啥用。但清华和北大这个手册完全不一样!它先是给你讲清楚原理,然后手把手教你怎么科学地使用。它不只是告诉你怎么提问,还会告诉你为啥要这么问,这不就是教你怎么掌握提示词的底层逻辑嘛。
- vllm多卡部署Qwen2.5-72B-Instruct-GPTQ-Int4
Yanc_L
人工智能
双卡v10032G部署结果如下,推理时长16s3卡,tensor_parallel_size=3,tensor并行的数量一定要能被attentionheads整除4卡,tensor_parallel_size=4,推理速度4s
- ChatGPT o1与GPT-4o、Claude 3.5 Sonnet和Gemini 1.5 Pro的比较
开发者每周简报
chatgpt人工智能gpt
全新的ChatGPTo1模型(代号“Strawberry”)是OpenAI的最新进展,专注于以前的AI模型难以应对的领域:高层次推理、数学和复杂编程。OpenAI设计o1模型以花费更多时间思考问题,使其在需要逐层推理的任务中提高准确性。本文深入介绍了o1的特性、现实中的应用以及它与顶级竞争对手GPT-4o、Gemini1.5Pro和Claude3.5Sonnet的比较。什么是OpenAIo1模型?
- Voice Translation of Audio Files into Different Languages Using Gpt-4o
开发者每周简报
ffmpeg人工智能
openai-cookbook/examples/voice_solutions/voice_translation_into_different_languages_using_GPT-4o.ipynbatmain·openai/openai-cookbook·GitHub您是否曾经想将播客翻译成您的母语?翻译和配音音频内容可以使其更便于全球观众理解。借助GPT-4o的全新音频输入和音频输出模式
- 文本向量化-词嵌入方法系列1:静态词嵌入(Word2Vec+GloVe)
学习ml的小菜鸡
nlp自然语言处理word2vec
文本分散化表示指将语言表示成低维、稠密、连续的向量,分为静态嵌入和动态嵌入两种方式。静态词嵌入有Word2Vec,Sen2Vec,Doc2Vec,以及GloVe模型;而动态词嵌入有ELMO,Transformer,GPT,Bert和XLNet等等。本文主要对静态词嵌入方法做一个整体介绍,动态词嵌入会在系列2中更新。目录1.Word2Vec1.1CBOW1.2Skip-gram1.3Sen2Vec+
- 避坑指南:chatgpt账号购买成品号- chatgpt 4.0 plus成品号购买手册!
openai
购买ChatGPT账号的注意事项及指南✨在当前人工智能技术快速发展的背景下,ChatGPT作为一种强大的语言模型工具️,受到了广泛关注。然而,在获取ChatGPT账号的过程中,用户需审慎考虑多项关键因素,以确保所购账号的安全、可靠及合法性✅,规避潜在风险⚠️。本文将深入探讨购买ChatGPT账号时需重点关注的几个方面,并提供相关建议。1.账号来源审查️♂️账号来源是决定其安全性和可靠性的首要因素
- 智能遥感新质生产力:ChatGPT、Python和OpenCV强强联合;空天地遥感数据分析的全流程;地面数据、无人机数据、卫星数据、多源数据等处理
小艳加油
DeepSeekChatGPT遥感遥感新质生产力ChatGPTOpenCV遥感数据处理
通过系统化的模块设计和丰富的实战案例,深入理解和掌握遥感数据的处理与计算。不仅涵盖了从零基础入门Python编程、OpenCV视觉处理的基础知识,还将借助ChatGPT智能支持,引导您掌握遥感影像识别和分析的进阶技术。更为重要的是,通过15个经过精心设计的真实案例,深度参与地质监测、城市规划、农业分析、生态评估等不同场景下的遥感应用实践。层层递进、结构严谨,帮助您系统性掌握从数据预处理、图像增强、
- 技术人实测 | 如何用AI工具2分钟突破知网AIGC检测线
LL06210721
人工智能AIGC
最近在GitHub发现个有意思的本地化算法工具,其核心是通过对抗式语义重组技术重构文本逻辑链。测试时发现:将GPT生成的论文导入后,系统会保留原始参考文献格式,同时用学术同义词替换引擎重写表达结构。实测数据:某985实验室的AI生成稿经处理,知网AIGC率从38%→9.7%(检测截图已脱敏),维普重复率从24%→8.3%。工具最实用的三个细节:保留公式编号和图表位置不变支持LaTeX源码级修改追踪
- 大模型“瘦身”革命——模型压缩与加速
大模型应用场景
人工智能开源transformer自然语言处理ai大模型LLM
随着AI大模型(如GPT、BERT、DALL·E等)的崛起,它们在自然语言处理、图像生成等领域的表现令人惊叹。然而,大模型的参数量动辄数十亿甚至上千亿,带来了巨大的计算资源消耗和部署成本。如何在保持模型性能的同时,降低其计算和存储需求,成为了AI领域的热门话题。本文将深入探讨AI大模型的“瘦身”革命——模型压缩与加速技术,帮助开发者高效部署大模型。一、为什么需要模型压缩与加速?AI大模型(如GPT
- 你也可以成为数据分析师: 实战案例手把手教你如何在ChatGPT内使用Code Interpreter进行数据分析
恒TBOSH
GPT-4chatgpt数据分析人工智能深度学习自然语言处理
终于,OpenAI向所有Plus用户开放了CodeInterpreter功能,这真是个令人振奋的好消息!我迫不及待地开始了测试,并且测试结果出奇地令人满意。借助Python代码的强大功能,CodeInterpreter在数据分析领域展现出了最大的优势。无论是普通的Excel数据分析还是专业的数据分析,现在都可以通过与ChatGPT的对话来进行,这彻底改变了数据分析的方式。为了充分展示CodeInt
- GPT-4o 随机性揭秘:可控与不可控的奥秘
真智AI
java前端人工智能机器学习语言模型chatgpt
GPT-4o中可避免与不可避免的随机性探讨GPT-4o生成随机性的来源,从已知且可控的因素到不透明且不可控的机制。GPT-4o结果中的随机性:无可避免的现实毫无疑问,GPT-4o的输出存在随机性。毕竟,模型在选择每个token时是从概率分布中进行采样的。但我一直没有意识到,这些概率本身并不是完全确定性的。即使在使用相同的提示词、固定的随机种子(seed)以及将温度(temperature)设为0的
- Open Interpreter利用Code Interpreter实现本地化
DigitalChina_DCG
大数据AIGCaigc
前言去年7月,OpenAI发布了一个强大的插件,名为CodeInterpreter(代码解释器),它可以根据用户的自然语言需求生成并执行代码解决方案,帮助完成各种任务,如数据分析、图表创建和文件编辑等。尽管OpenAI的GPT-4代码解释器改变了游戏规则,但它也有一些特定的限制。OpenAI的解决方案是托管的,它在受控的远程环境中运行,限制了开发人员对本地设置的控制。这导致了一些明显的限制,比如无
- ——当机器开始"思考",人类终于读懂了自己的大脑
人工智能机器学习
第一层突破:AI让我们看见"思维的源代码"想象一下,你正在教ChatGPT写诗——当它从"枯藤老树昏鸦"的堆砌,突然产出"月光在二进制河流里流淌"的句子时,这不仅是算法的胜利,更是一面照向人类思维的魔镜。科学家发现,AI学习语言的方式竟与婴儿惊人相似:✅模式捕捉:像人类从环境声音中提取词汇✅联想迭代:用已知概念嫁接新知识(比如用"电"理解"闪电网络")✅创造性错误:AI的"幻觉"对应人脑的直觉跳跃
- 大模型——Spring Boot 整合 Spring AI 实现项目接入ChatGPT
不二人生
大模型人工智能大模型
大模型——SpringBoot整合SpringAI实现项目接入ChatGPT随着人工智能技术的快速发展,越来越多的应用程序开始集成人工智能功能,以提供更智能、更个性化的体验。诸如ChatGPT等开放性大型语言模型的出现,使得自然语言处理和对话系统的开发变得更加容易和普及。这些技术已经在社交媒体、客户服务、教育等领域展现出巨大潜力,对于提升用户体验和提高工作效率至关重要。优势在之前,openai已经
- 大语言模型引擎全解析:Transformers、vLLM、Llama.cpp等,最佳选择全攻略!
大模型入门教程
语言模型llama人工智能DeepSeekpromptAI大模型大模型
近年来,大语言模型(LLMs)如GPT、LLaMA、BERT等已经成为人工智能领域的核心驱动力。然而,如何高效地运行和优化这些模型,成为了开发者和研究者面临的重要挑战。为此,一系列专为大语言模型设计的引擎应运而生。本文将带你深入了解Transformers、vLLM、Llama.cpp、SGLang、MLX和Ollama这些引擎,帮助你找到最适合的工具,释放大语言模型的全部潜力!作为技术人员,不仅
- 比特币,区块链及相关概念简介(一)
湖光秋色
区块链区块链比特币去中心化
目录什么是比特币比特币用来交易什么呢应用场景和黄金的关系相似之处:不同之处:如果是交易才会有比特币奖励那第一个持有者是怎么获取的呢又是怎么交易的呢其他加密货币该系列文章链接以下内容结合了chatgpt3.5以及网络文章。用于学习记录。简介:介绍了比特币的概念,比特币的交易对象,比特币的应用场景,以及和黄金的关系;其他加密货币等。什么是比特币比特币是一种数字货币,也是全球第一个去中心化的加密货币。它
- 使用服务器搭建无门槛ChatGPT WEB应用LobeChat
莱卡云(Lcayun)
服务器chatgpt前端网络linux运维
一、服务器实例配置实例选型推荐配置:2核4GB内存,保障AI推理和并发访问的流畅性67。操作系统:选择Ubuntu22.04LTS,适配Docker环境与LobeChat依赖库23。安全组规则:开放以下端口:3210(LobeChat默认Web端口)SSH(22)(用于远程管理)25。二、Docker环境与LobeChat部署安装Docker与Compose
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin