麦克劳林公式-麦克老林级数

麦克老林公式


公式描述:麦克劳林公式是泰勒公式的一种特殊形式。

泰勒公式可以参考这里

麦克劳林级数(Maclaurin series)是函数在x=0处的泰勒级数,它是牛顿(I.Newton)的学生麦克劳林(C.Maclaurin)于1742年给出的,用来证明局部极值的充分条件,他自己说明这是泰勒级数的特例,但后人却加了麦克劳林级数这个名称

基本介绍

对于一个给定的函数f(x),如果能找到一个幂级数

,使


成立,则称f(x)可展开成x的幂级数。

但要将f(x)展开成x的一个幂级数,需解决两个以下问题:

  • (1)如何确定式(1)中的系数(a0,a1,a2,...an,...)
  • (2)按所求得的系数,这个幂级数在它的收敛域内的和函数是否就是f(x)?

先解决问题(1),不妨设式(1)成立。那么。根据幂级数可以逐项求导的性质,依次求出式(1)中的各阶导数:




把x=0代人式(1)及上述各式,得


于是



把它们代回式(1),得


通常称式(2)为f(x)的麦克劳林展开式或f(x)在x=0处的幂级数展开式。式(2)中等号右端的级数称为f(x)的麦克劳林级数或f(x)展开成x的幂级数。

至于问题(2)。只要证明其余项满足


即可(证明略)。

下面考虑在什么条件下,函数f(x)能展开成麦克劳林级数。

可见,按公式


求得系数的幂级数在它的收敛域内的和函数就是f(x)

常用公式证明

sinx 的n阶导数

并且x在x=0的时候都可导的.即x0 = 0;
根据泰勒公式



带入泰勒公式

证明方式同上 我们只需要会求导数就可以了

泰勒级数
百度百科

你可能感兴趣的:(麦克劳林公式-麦克老林级数)