- DeepSeek与Web3:科技融合的新纪元
人工智能深度学习
近年来,AI与Web3的融合正以前所未有的速度发展,而DeepSeek的出现加速了这一趋势。作为新一代LLM(大型语言模型),DeepSeek不仅在推理质量和成本上展现出优势,还重新定义了去中心化智能代理(AIAgent)的发展方向。从初期的技术突破到目前多个项目的集成应用,DeepSeek正在推动Web3生态迈向智能化的新阶段。LLM如何塑造Web3智能生态LLM作为AIAgent的核心技术之一
- 微软 LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练
人工智能
LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练LayoutLMv3应用统一的文本-图像多模态Transformer来学习跨模态表示。Transformer具有多层架构,每层主要由多头自注意力机制和逐位置全连接前馈网络组成。Transformer的输入是文本嵌入$Y=y_{1:L}$和图像嵌入$X=x_{1:M}$序列的连接,其中$L$和$M$分别是文本和图像的序列长度。通过Tr
- AI时代前端开发的创造力:解放还是束缚?
前端
在人工智能(AI)快速发展的时代,AI技术的影响已经渗透到各个领域,从医疗保健到金融服务,再到创意产业。AI工具的出现,为前端开发带来了前所未有的效率提升,但也引发了人们对创造力的担忧:这些强大的AI写代码工具会解放前端工程师的创造力,还是会最终扼杀它?本文将以ScriptEcho为例,探讨AI辅助前端开发工具对前端工程师创造力的双面影响。AI辅助前端开发对创造力的潜在负面影响不可否认,AI辅助前
- AI前端开发学习资源与途径:开启你的智能化前端之旅
前端
随着人工智能技术的飞速发展,AI写代码工具已经不再是遥不可及的梦想,它正深刻地改变着前端开发的模式。AI赋能前端开发,不仅提高了开发效率,也降低了学习门槛,为更多开发者打开了通往智能化前端世界的大门。然而,学习AI前端开发也面临着诸多挑战,需要系统学习和持续实践。本文将为你详细介绍AI前端开发的学习途径、资源以及实践经验,助你开启这段精彩的旅程。AI前端开发的兴起及重要性近年来,人工智能技术在各个
- AI前端开发:与新技术融合,重塑职业发展之路
前端
近年来,人工智能(AI)技术飞速发展,深刻地改变着各个行业,前端开发领域也不例外。AI写代码工具的兴起,为前端开发者带来了前所未有的机遇和挑战。本文将探讨AI前端开发与其他技术的融合,分析其对职业发展的影响,并以ScriptEcho为例,解读AI如何赋能前端开发。AI前端开发与其他技术的融合:机遇与挑战并存AI前端开发并非孤立存在,它与低代码/无代码平台、区块链技术、Web3.0、元宇宙等新兴技术
- AI时代的前端开发:拥抱变化,迎接挑战
前端
近年来,人工智能(AI)技术的飞速发展深刻地改变着各个行业,前端开发领域也不例外。面对AI带来的冲击和挑战,开发者们需要积极拥抱变化,学习新技能,才能在竞争激烈的市场中立于不败之地。本文将探讨AI时代前端开发面临的新挑战,以及如何利用AI赋能前端开发,提高效率,应对技术更新迭代。关键词:AI写代码工具AI时代前端开发的新挑战AI技术的快速发展,为前端开发带来了前所未有的机遇,同时也带来了新的挑战。
- DeepSeek 实现原理探析
rockmelodies
人工智能aideepseek深度学习
DeepSeek实现原理探析引言DeepSeek是一种基于深度学习的智能搜索技术,它通过结合自然语言处理(NLP)、信息检索(IR)和机器学习(ML)等多领域的技术,旨在提供更加精准、智能的搜索结果。本文将深入探讨DeepSeek的实现原理,分析其核心技术及其在实际应用中的表现。一、DeepSeek的核心技术自然语言处理(NLP)词嵌入(WordEmbedding):DeepSeek使用如Word
- 从零开始构建一个大语言模型-第七章第一节
释迦呼呼
从零开始构建一个大语言模型语言模型人工智能自然语言处理机器学习transformer
第七章目录7.1指令微调简介7.2为有监督的指令微调准备数据集7.3将数据整理成训练批次7.4为指令数据集创建数据加载器7.5加载预训练的大语言模型7.6在指令数据上对大语言模型进行微调7.7提取并保存回复7.8评估微调后的大语言模型7.9结论本章内容涵盖大语言模型的指令微调过程准备用于有监督指令微调的数据集将指令数据整理成训练批次提取大语言模型生成的指令响应以供评估此前,我们实现了大语言模型(L
- 自动驾驶技术的未来趋势与挑战分析
智能计算研究中心
其他
内容概要自动驾驶技术自诞生以来经历了多个发展阶段。最初的研究集中在感知和控制系统的基础构建,随后进入了数据处理和算法的优化阶段,如今,随着人工智能和机器学习技术的快速应用,自动驾驶行业正处于一个前所未有的迅猛发展期。当前,行业内涌现出多种解决方案,各大汽车制造商与科技公司纷纷加大投入,推动这一领域的技术进步。市场需求不断增加,为自动驾驶技术注入活力。城市交通拥堵、环境污染等问题促使人们寻求更加智能
- 大语言模型LLM代码:PyTorch库与ChatGLM模型
North_D
大语言模型LLM语言模型pytorch人工智能python深度学习自然语言处理大语言模型
文章目录通过阅读大语言模型的代码,熟悉并理解PyTorch大语言模型LLM代码:PyTorch库与ChatGLM模型大语言模型中的PyTorchChatGLM3-6B模型代码ChatGLMModel类总览ChatGLMModel类说明ChatGLMModel类核心代码片段通过阅读大语言模型的代码,熟悉并理解PyTorch大语言模型LLM代码:PyTorch库与ChatGLM模型大语言模型中的PyT
- DeepSeek预言未来5年升值最快的东西
ZhuBin365
其它人工智能机器人
Thinking好的,我现在需要思考未来5年哪些东西可能会升值最快。首先,我得考虑当前的经济趋势和技术发展的方向。通货膨胀可能继续,所以实物资产可能保值。然后是科技领域,比如人工智能、量子计算这些前沿技术相关的资产可能会有增长。接着,环保和可持续发展是热门话题,可再生能源相关的产业可能会增值。例如,太阳能、风能的公司股票或者相关技术专利。另外,电动汽车和电池技术也可能持续发展,锂、钴等稀有金属的需
- 【深入探索-deepseek】高等数学与AI的因果关系
我的青春不太冷
人工智能机器学习数学
目录数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数2.微积分3.概率论与统计二、自然语言处理领域三、语音识别领域四、数学在AI不同领域应用的逻辑图五、参考资料数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数图像变换:想象我们有一张二维图片,图片里有个点,它的位置用坐标((x,y))表示。现在我们想把这个点绕着图片的原点(就像把纸钉在墙上,以钉子的位置为中心)逆时针旋转一定角度
- LLM大模型产品经理学习指南【2025全新版】:极致详细,一篇搞定!
大模型入门学习
产品经理语言模型人工智能DeepSeek大模型学习LLM
前言·随着人工智能技术的蓬勃发展,尤其是大模型(LargeModel)的强势兴起,越来越多的企业对这一领域愈发重视并加大投入。作为大模型产品经理,需具备一系列跨学科的知识与技能,方能有效地推动产品的开发、优化以及市场化进程。以下是一份详尽的大模型产品经理学习路线,旨在助力你构建所需的知识体系,实现从零基础到精通的蜕变。一、基础知识阶段(一)计算机科学基础数据结构与算法:深入理解基本的数据结构(如数
- 销售易、极兔、珍客CRM:产品功能特色与企业适用性分析
程序员机器学习人工智能
销售易CRM产品功能移动化与社交化:销售易CRM支持iOS、Android等主流操作系统,销售人员可以随时随地访问客户信息、更新销售进度、创建任务等。同时,它还具备社交化功能,能够整合企业内部的社交网络,促进员工之间的协作与沟通。AI与大数据驱动:销售易CRM融合了人工智能和大数据技术,通过智能数据分析,帮助企业洞察客户行为和需求,预测销售趋势。例如,AI可以对客户数据进行深度挖掘,识别出高价值客
- 前瞻技术:塑造未来生活的新趋势
火龙果wa
生活人工智能经验分享
人工智能在艺术创作中的应用越来越普遍。AI可以生成画作、音乐和文学作品。它通过分析大量数据,学习艺术风格,并能创造出独特的作品。AI创作的艺术作品有几个特点。首先,它可以快速完成创作,节省时间。第二,AI能够融合多种风格。这使得作品更加多样化,有了新的表现形式。此外,AI常常会产生一些意想不到的创意,这能激发人们的灵感。艺术家与AI的合作也在逐渐发展。很多艺术家开始尝试与AI共同创作。他们使用AI
- 4.Python教程--项目部署篇(全)
花开如雨
笔记
Python人工智能总目录人工智能总目录网页链接文章目录Python人工智能总目录13、Python运维Day0113.1运维1.运维概述2.运维工具3.Linux常用命令4.周期性计划任务5.awk的使用14、Python项目部署Day0114.1项目部署1.概念2.项目部署(nginx+uwsgi+django)3.部署在线商城项目13、Python运维Day0113.1运维1.运维概述1、运
- DeepSeek深度探索:从新手到高手的蜕变之旅
古龙飞扬
ai人工智能
引言在当今数字化与智能化的浪潮中,人工智能(AI)技术正以前所未有的速度改变着我们的生活和工作方式。DeepSeek,作为一款由杭州深度求索人工智能基础技术研究有限公司开发的人工智能模型,凭借其强大的功能和灵活的应用场景,成为了众多企业和专业人士的得力助手。本文将带你深入了解DeepSeek,从新手入门到高手进阶,掌握其核心功能与使用技巧,实现个人能力的蜕变。一、初识DeepSeek:人工智能的“
- AI前端开发的国际化发展机遇:ScriptEcho助力全球化布局
2401_89747417
人工智能前端
在全球化的今天,互联网应用已不再局限于单一市场。高效便捷的前端开发方案成为企业拓展国际市场的关键。得益于人工智能技术的飞速发展,AI代码生成器正在深刻改变前端开发模式,为国际化应用开发带来前所未有的机遇。然而,国际化开发也面临着诸多挑战,例如不同地区用户习惯、技术标准、语言差异等等。本文将探讨AI前端开发在国际化市场中的机遇与挑战,并以ScriptEcho为例,分析AI工具如何助力企业实现高效的全
- 中国人工智能的起步/发展,与这位数学家密切相关
东锋1.3
人工智能人工智能
1979年在中国是一个重要的年份。这一年发生了诸多大事,也被视为中国在政治、经济、科技、文化等多个领域的一个重要转折点和中国近现代历史重要的时期断代点之一。相比1979年所开启的波澜壮阔的新时代,中国人工智能(ArtificialIntelligence,AI)研究在1979年的起步只能算历史大潮中的一朵不起眼的浪花,但在中国人工智能的历史里,这是开天辟地的大事件。人工智能最早的学派是符号主义学派
- 今日AI和商界事件(2025-02-07)
LS_learner
AI和商界事件人工智能
今日AI领域的相关事件包括但不限于以下几个方面:一、政策与监管美国众议员推动禁止政府设备使用中国AI应用DeepSeek:美国众议院两名来自两党的议员提议立法,禁止联邦政府设备使用中国人工智能应用DeepSeek,理由是中国政府可能利用该应用进行监视和散布虚假信息。这一事件反映了地缘政治紧张背景下,各国在关键技术领域对自主性和安全性的重视。二、行业动态与发展OpenAI推进“星际之门”项目:Ope
- 使用 HuggingFace 库进行本地嵌入向量生成
qq_37836323
python人工智能开发语言
在当今的AI和机器学习应用中,嵌入向量(embeddings)已成为不可或缺的一部分。嵌入向量能够将文本等高维数据转换为低维稠密向量,从而便于计算和分析。在本文中,我们将介绍如何使用HuggingFace库在本地生成嵌入向量,并演示相关代码。环境准备首先,我们需要安装一些必要的依赖库。可以通过以下命令进行安装:#安装必要的库!pipinstallsentence-transformers!pipi
- Python NLP 自然语言处理
简简单单OnlineZuozuo
m1Python领域python自然语言处理开发语言
文章目录PythonNLP自然语言处理PythonNLP自然语言处理"""基于https://github.com/isnowfy/snownlp$pipinstallsnownlp"""fromsnownlpimportSnowNLP#分词defsnownlp_cut(text):returnSnowNLP(text).words#词性标准defsnownlp_tags(text):#返回积极情
- AI时代的职业规划:程序员的核心能力提升
AI与编程之窗
杂谈人工智能AI职业规划AI辅助编程系统架构设计算法优化性能调优
一、引言近年来,随着AIGC(如ChatGPT、MidJourney、Claude等)大语言模型的迅速发展,AI辅助编程工具在程序员的日常工作中日益普及,这些工具极大地改变了编程实践,从自动补全、代码生成到智能调试,AI正在深刻影响着编程行业的各个方面,通过提高工作效率和简化复杂任务,AI工具为开发者提供了前所未有的便利。然而,这种变化也引发了一些担忧:AI是否会取代部分编程工作?程序员在依赖这些
- 精通LangChain:如何使用Unstructured处理多种格式的图像文档
hshahtjtbh
langchainpython
#引言随着人工智能和深度学习的快速发展,文档图像分析(DocumentImageAnalysis,DIA)在许多领域中变得至关重要。然而,处理多种图像格式的文档仍然是一个挑战。本文将介绍如何使用Unstructured库,通过LangChain框架加载和处理多种格式的图像文档,帮助您在DIA任务中实现更高效的工作流程。#主要内容##安装Unstructured在开始之前,确保安装了Unstruct
- 《深入了解Unstructured包:在LangChain中使用Unstructured.IO提取干净文本》
cgsayuclv
langchainpython
引言在现代数据处理和人工智能应用中,解析和清洗文本数据是一个重要的环节。无论是PDF文件、Word文档还是CSV文件,能够高效地提取有用信息对下游任务至关重要。这篇文章将介绍如何使用Unstructured.IO的Unstructured包来从原始文档中提取干净文本,并在LangChain框架中使用它。本文将包含安装与设置指南、详细教程、代码示例、常见问题及解决方案,并提供进一步学习的资源。主要内
- DeepSeek-V2模型版本更新:探索高效经济的多专家混合架构
姜葵烽
DeepSeek-V2模型版本更新:探索高效经济的多专家混合架构DeepSeek-V2项目地址:https://gitcode.com/hf_mirrors/ai-gitcode/DeepSeek-V2在人工智能模型的发展进程中,每一次版本更新都是对前一次成果的深化与完善。今天,我们将详细介绍DeepSeek-V2模型的新版本特性,以及它如何通过创新的架构设计,实现了在性能和成本之间的最佳平衡。新
- 【人工智能】Python中的深度学习优化器:从SGD到Adam
蒙娜丽宁
Python杂谈人工智能人工智能python深度学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在深度学习模型的训练过程中,优化器起着至关重要的作用,它决定了模型的收敛速度以及最终的性能。本文将介绍深度学习中常用的优化器,从传统的随机梯度下降(SGD)到现代的自适应优化器(如Adam)。我们将深入探讨每种优化器的原理、优缺点,并通过Python实现
- 【人工智能】基于Python和OpenCV实现实时人脸识别系统:从基础到应用
蒙娜丽宁
Python杂谈人工智能python开发语言
随着人工智能和计算机视觉的快速发展,人脸识别技术已广泛应用于监控、安全、社交媒体、金融和医疗等领域。本文将介绍如何利用Python和OpenCV库,结合dlib进行实时人脸识别的实现。通过构建一个基础的实时人脸识别系统,读者将深入了解人脸检测与识别的核心原理,掌握如何使用现有的计算机视觉工具快速开发一个有效的实时系统。本文将详细介绍如何通过OpenCV和dlib来实现人脸检测与识别,如何实时获取摄
- 机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)
qq742234984
机器学习线性回归逻辑回归
机器学习面试笔试知识点-线性回归、逻辑回归LogisticsRegression和支持向量机SVM微信公众号:数学建模与人工智能一、线性回归1.线性回归的假设函数2.线性回归的损失函数(LossFunction)两者区别3.简述岭回归与Lasso回归以及使用场景4.什么场景下用L1、L2正则化5.什么是ElasticNet回归6.ElasticNet回归的使用场景7.线性回归要求因变量服从正态分布
- 在亚马逊云科技上一键自动部署Falcon3大语言模型
佛州小李哥
AWS技术科技语言模型人工智能亚马逊云科技awsai云计算
由TII(阿布扎比技术创新研究所)开发的全新的Falcon3系列模型,已经在亚马逊云科技的模型自动化快速部署功能-AmazonSageMakerJumpStart上可以使用了。在本文中小李哥就将带大家探训如何在AmazonSageMakerAI上高效部署Falcon3模型。Falcon3系列模型概述Falcon3系列由阿布扎比技术创新研究所(TII)研发,它的出现标志着开源语言模型的重大进步。Fa
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/