nlp文本主题提取算法总结

  1. BERTopic:

    • 简介: 基于预训练的语言模型BERT(Bidirectional Encoder Representations from Transformers)的主题模型,通过将文档嵌入到BERT空间中并进行聚类,实现主题提取。
    • 作者: 出自Cherubin等人的研究(2021)。
  2. BigARTM (Big Additive Regularization Topic Model):

    • 简介: BigARTM是一种多模态、多目标的主题模型,可以处理大规模文本集合,并且允许用户通过添加正则化项来引导主题模型学习特定的模式。
    • 作者: 出自"BigARTM: Open-Source Library for Regularized Multimodal and Multilingual Topic Modeling"(2015)。
  3. LDA2Vec:

    • 简介: LDA2Vec是一种将词向量和主题模型(Latent Dirichlet Allocation, LDA)结合的方法,通过将LDA中的主题表示嵌入到词嵌入空间中,实现更好的语义建模。
    • 作者: 出自"Dynamic Topic Models for Tracking Research Communities over Time"(2016)。
  4. ETM (Embedding Topic Model):

    • 简介: ETM是一种将主题嵌入到连续空间的模型,通过学习主题嵌入向量,将文档嵌入到主题空间中,以获得更丰富的语义表示。
    • 作者: 出自"A Neural Probabilistic Topic Model"(2019)。
  5. Biterm Topic Model (BTM):

    • 简介: BTM是一种基于二项分布的主题模型,通过对文档中的词对(biterms)进行建模,实现了在大规模文本集上高效的主题建模。
    • 作者: 出自"Modeling Bimodal Texts with the Biterm Topic Model"(2014)。

你可能感兴趣的:(自然语言处理,人工智能)