- 专访微软CEO:AGI并非真正基准,AI行业也不会“赢家通吃”
AI大模型头条
人工智能那些事儿microsoftagi人工智能游戏aigpt语言模型
【编者按】日前,微软首席执行官SatyaNadella在参加由知名科技播客主持人DwarkeshPatel主持的播客节目DwarkeshPodcast时,谈到了他对当前人工智能(AI)/通用人工智能(AGI)的前景、量子计算的革命性进展,以及科技如何推动全球经济变革的看法。当各家公司都在争先恐后地追逐AGI时,Nadella在访谈中却语出惊人,“我们自己宣称达成某个AGI的里程碑,对我来说,那只是
- 人工智能在fpga的具体应用_FPGA创意人工智能研发 校企合作培养专业人才
墨墨猪
人工智能在fpga的具体应用
FPGA英特尔®FPGA与人工智能技术培训——成都信息工程大学站人工智能在21世纪初迎来以深度学习与大数据云计算为主导的第三次浪潮,在无人驾驶、医疗保健、工业等多个领域得到广泛应用。随着人工智能理论和技术日益成熟,FPGA在人工智能方面的应用也越来越多,特别对于需要分析大量数据的AI、大数据以及机器学习等研究领域。人工智能与FPGA的灵活应用,对人工智能专业人才培养提出了更高要求。英特尔®FPGA
- 【人工智能数学基础篇】线性代数基础学习:深入解读矩阵及其运算
猿享天开
人工智能基础知识学习线性代数人工智能学习矩阵及其运算
矩阵及其运算:人工智能入门数学基础的深入解读引言线性代数是人工智能(AI)和机器学习的数学基础,而矩阵作为其核心概念之一,承担着数据表示、变换和运算的重任。矩阵不仅在数据科学中广泛应用,更是神经网络、图像处理、自然语言处理等领域的重要工具。本文将深入探讨矩阵的基本概念、性质及其运算,通过详细的数学公式、推导过程和代码示例,帮助读者更好地理解矩阵在AI中的应用。第一章:矩阵的基本概念1.1矩阵的定义
- AI 在未来相机领域的应用前景如何?
程序员Android
人工智能数码相机智能电视
和你一起终身学习,这里是程序员Android人工智能(AI)在手机相机领域的应用已成为近年来技术创新的核心驱动力之一。随着计算摄影、深度学习算法和硬件加速技术的进步,AI正在重新定义手机摄影的可能性,并为未来带来更多颠覆性潜力。以下是AI在手机相机中的关键潜力方向及具体应用场景:经典好文推荐,通过阅读本文,您将收获以下知识点:1.计算摄影的深度进化多帧合成与超分辨率:AI通过分析多张连续拍摄的帧(
- 云平台结合DeepSeek的AI模型优化实践:技术突破与应用革新
荣华富贵8
程序员的知识储备1经验分享
云平台与AI模型的深度结合已成为推动人工智能技术落地的重要驱动力。DeepSeek(深度求索)作为前沿AI模型的代表,通过与云计算的深度融合,在技术架构和应用场景层面实现了突破性进展。以下从技术突破和应用革新两个维度进行系统解析:---###**一、技术突破:云原生AI架构的进化**####1.**弹性算力调度体系**-**动态资源分配**:基于Kubernetes的智能调度器实现GPU资源的细粒
- 全市场大模型分类及对比分析报告
早退的程序员
分类数据挖掘人工智能
全市场大模型分类及对比分析报告1.引言随着人工智能技术的飞速发展,大模型(LargeModels)已成为推动AI进步的核心力量。大模型凭借其强大的计算能力和海量数据处理能力,在自然语言处理(NLP)、计算机视觉(CV)、语音识别等领域取得了显著成果。本报告将对全市场中几类主要的大模型进行分类和对比分析,探讨其技术特点、应用场景及未来发展趋势。2.大模型分类根据模型架构、训练目标和应用领域,全市场的
- 具身智能(Embodied Intelligence)
ZhangJiQun&MXP
教学人工智能深度学习算法
目录具身智能(EmbodiedIntelligence)简单理解举例说明具身智能(EmbodiedIntelligence)是人工智能领域的一个子领域,它强调智能系统不仅仅依赖于算法和数据处理,还必须具备一个物理实体(embodiment),通过与环境的直接互动来获取信息、学习、适应并采取行动。以下是对具身智能的简单理解和举例说明:简单理解具身智能的核心在于“具身”二字,即智能系统需要有一个物理形
- DeepSeek:通用人工智能的探路者与技术革新者——从技术架构到应用生态的全方位解析
sanggou
人工智能架构
一、DeepSeek的发展历程:中国AGI先锋的崛起DeepSeek(深度求索)成立于2023年,是中国人工智能领域的一颗新星。尽管成立时间较短,但其发展速度与技术突破令人瞩目:2023年:公司成立,核心团队由来自全球顶尖高校(如MIT、斯坦福)和科技企业(如GoogleBrain、OpenAI)的AI科学家组成,专注于AGI(通用人工智能)技术的研发。2024年初:推出首个公开产品DeepSee
- 大模型知识蒸馏:技术突破与应用范式重构——从DeepSeek创新看AI基础设施演进路径
大模型服务器厂商
重构人工智能
一、知识蒸馏的技术哲学演进知识蒸馏(KnowledgeDistillation)作为模型压缩领域的核心技术突破,其发展轨迹折射出人工智能从"规模崇拜"向"效率优先"的范式转变。传统知识蒸馏框架主要关注概率分布层面的知识迁移,但DeepSeek等前沿项目展示出更复杂的知识萃取机制。最新研究表明,知识传递已从单纯的输出层模仿,发展到注意力模式迁移(AttentionTransfer)、隐层特征对齐(H
- Byzer:面向Data+AI的云原生低代码化语言
ITPUB-微风
人工智能云原生低代码
在数据科学和人工智能迅速发展的今天,企业面临着如何高效处理海量数据并实现AI模型快速开发的挑战。Byzer,作为一种创新的云原生低代码化语言,为这一难题提供了独特的解决方案。本文将深入探讨Byzer的设计哲学、应用场景及其工程特性,展现其在Data+AI领域的潜力和价值。一、Byzer的设计哲学Byzer的核心设计理念在于简化大数据和AI平台的构建过程,降低开发成本。它通过类SQL的语言和云原生架
- 01 目录-具身智能学习规划
天机️灵韵
具身智能人工智能具身智能机器人生物信息学
具身智能(EmbodiedIntelligence)强调智能体通过身体与环境的动态交互实现学习和决策,是人工智能、机器人学、认知科学和神经科学交叉的前沿领域。其核心在于打破传统AI的“离身认知”,将智能与物理实体、感知-运动系统紧密结合。以下是具身智能学习规划的框架:一、基础理论储备数学与编程基础数学:概率统计、线性代数、微积分、优化理论、微分几何(运动规划)。编程:Python(主流工具链)、C
- AIoT是什么?AIoT现状如何?
问就是想睡觉
物联网人工智能
AIoT是什么?AIoT即人工智能物联网(ArtificialIntelligence&InternetofThings),是人工智能技术(AI)与物联网(IoT)在实际应用中的落地融合。物联网产生、收集来自不同维度的海量数据并存储于云端、边缘端,再通过大数据分析以及更高形式的人工智能技术,实现万物数据化、万物智联化。其目的是建构一种更高级形式的智能化生态体系,在该体系内,不同智能终端设备之间、不
- AIoT是什么?关键技术及应用
AI+程序员在路上
人工智能物联网系列人工智能物联网
一.AIoT定义AIoT概念是在2017年正式向公开市场提出的。2017年11月28日,在由光际资本、36氪、特斯联联合主办的“万物智能.新纪元AIoT未来峰会”上,与会专家及行业嘉宾首次正式向公开市场提出AIoT概念。AIoT即人工智能物联网,是人工智能(AI)与物联网(IoT)的融合。二.AIoT关键技术1.物联网技术物联网技术是AIoT的基础,它负责将各类设备连接起来,实现数据的采集与传输。
- RAG技术全面解析:从原理到实践中的20个关键问题
大F的智能小课
大模型理论和实战人工智能深度学习算法语言模型
一、基础概念与原理1.RAG是什么?与传统生成模型的区别是什么?RAG定义检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种结合检索技术与生成模型的技术。其核心流程是:用户提问后,系统从外部知识库(如文档、数据库)中检索相关文档片段;将检索结果作为上下文输入大语言模型(LLM);LLM基于上下文生成最终答案。与传统生成模型的对比维度传统生成模型(如GPT-3)
- DeepSeek颠覆传统教育:揭秘AI作业批改如何实现秒级反馈与精准提升
Coderabo
DeepSeekR1模型企业级应用人工智能
DeepSeek智能教育新突破:基于深度学习的作业批改与个性化反馈系统详解一、研究背景与意义在教育数字化转型的浪潮中,DeepSeek研发团队基于自研大语言模型,构建了新一代智能作业批改系统。该系统通过深度学习技术实现作业的自动化评分与个性化反馈,有效解决了传统教育中教师工作负荷大、反馈周期长、个性化不足等痛点。二、系统架构设计核心模块组成文本预处理模块深度学习评分引擎错误模式识别模块个性化反馈生
- 短视频账号矩阵系统源代码开发全攻略
敲代码的飞
大数据人工智能矩阵c语言线性代数
一、账号矩阵系统简介短视频账号矩阵是抖音账号运营的高阶玩法,指一个运营主体开设多个账号,实现相互引流和营销效果最大化。如今,短视频已经成为人们生活中不可或缺的一部分,而短视频账号矩阵系统的出现,为企业和个人提供了更高效的运营方式。短视频矩阵系统是一套用来集中化管理和运营多个短视频平台的工具类软件。它能够集中化管理在各大短视频平台上的账号,并利用人工智能技术实现批量剪辑、发布、管理和优化短视频内容,
- 复试英文准备方法
小王Jacky
计算机英语英语计算机英语
为了高效准备计算机领域的英文文献翻译面试,可以按照以下步骤进行系统训练,重点提升专业术语积累、文献结构理解和即时翻译能力:一、核心能力针对性训练专业术语速记建立术语库:-每天整理《算法导论》《人工智能:现代方法》等经典教材目录中的核心术语(如:Backpropagation-反向传播、HashCollision--用Excel或Anki卡片记录英文术语+中文释义+例句(例:"Thetimecomp
- 深度求索DeepSeek:AI大模型的全域应用与技术突破
量子纠缠BUG
DeepSeek部署DeepSeekAI人工智能easyui前端
——从政务到医疗,解析国产大模型的创新实践与未来图景引言:DeepSeek的技术定位与行业价值DeepSeek(深度求索)作为中国AI领域的新锐力量,凭借"低成本、高精度、强场景适配"的差异化优势,在短短两年内实现了从技术研发到行业落地的跨越式发展。其基于DeepSeek-R1系列大模型的创新架构,以600万美元的超低训练成本(仅为OpenAI同类模型的1/30)3,在自然语言处理、逻辑推理、多模
- 统一 SASE 架构中的网络和安全融合
网络研究观
网络研究观架构网络安全服务融合SASE框架
网络威胁情报技术的进步传统的网络边界一片混乱,剩下的只是无人管理的设备、分散在私有云和公共云中的资产、无法读取的应用程序流量泛滥,混合工作结构正在给现有网络的功能带来压力。更重要的是,这些问题早在生成式人工智能和大型语言模型的新障碍被引入公众之前就已出现。现在,每个办公室职员、宠物店老板、社交媒体影响者和咖啡店咖啡师都能够使用难以想象的处理能力,能够处理无数TB的数据,给全球网络带来新的压力。这些
- ai大模型自动化测试-TensorFlow Testing 测试模型实例
小赖同学啊
人工智能自动化测试(apppcAPI)python人工智能tensorflowpython
AI大模型自动化测试是确保模型质量、可靠性和性能的关键环节,以下将从测试流程、测试内容、测试工具及测试挑战与应对几个方面进行详细介绍:测试流程测试计划制定确定测试目标:明确要测试的AI大模型的具体功能、性能、安全性等方面的目标,例如评估模型在特定任务上的准确率、召回率等。定义测试范围:界定测试所涵盖的模型功能模块、数据类型、应用场景等,比如是否包括图像识别、自然语言处理等不同功能。规划测试资源:确
- DeepSeek:大模型时代的“破局者”
qq_44233281
ai深度学习人工智能
DeepSeek,是谁?DeepSeek,中文名深度求索,是一家成立于2023年7月17日的创新型科技公司,由知名量化资管巨头幻方量化创立,法定代表人系裴湉。公司专注于开发先进的大语言模型(LLM)和相关技术,致力于在人工智能领域实现技术突破和创新应用。在成立后的短时间内,DeepSeek取得了令人瞩目的成绩。2024年1月5日,发布首个包含670亿参数的大模型DeepSeekLLM,该模型从零开
- 深度学习-133-LangGraph之应用实例(二)使用面向过程和面向对象的两种编程方式构建带记忆的聊天机器人
皮皮冰燃
深度学习深度学习人工智能LangGraph
文章目录1通用配置1.1大语言模型ChatOllama1.2函数trim_messages1.2.1函数概述1.2.2函数参数1.2.3测试应用2面向过程编程2.1不裁剪历史信息2.1.1创建图2.1.2调用图2.2裁剪历史信息2.2.1创建图2.2.2调用图3面向对象编程3.1定义类MyState3.2定义类AIChat3.3应用4附录4.1问题及解决tokenizer4.2参考附录1通用配置L
- 脑洞打开话题:deepseek这么火,什么时候能完全代替人类?
噔噔噔噔@
网络
AI完全代替人类是一个复杂且充满争议的话题,涉及技术、伦理、社会和经济等多个方面。目前来看,AI在某些领域已经表现出超越人类的能力,但要完全代替人类仍然面临许多挑战和限制。以下是关于AI何时可能完全代替人类的一些分析和思考:1.技术层面的限制尽管AI在某些特定任务上已经超越了人类(如图像识别、语音识别、围棋等),但要完全代替人类,AI需要在以下几个方面取得突破:通用人工智能(AGI)目前的AI主要
- 未来至少十年时间里,哪些行业的岗位更有发展前景且很难被人工智能替代?
向贤
人工智能人工智能
未来至少十年时间里,哪些行业的岗位更有发展前景且很难被人工智能替代?在人工智能技术快速迭代的背景下,未来十年内,以下六大类行业因其对人类独特能力的依赖,将展现出强大的抗替代性,并成为具有长期发展潜力的领域:一、医疗健康行业:生命科学与人文关怀的交织复杂决策与不确定性应对医学诊断需要结合患者个体差异、病史和社会背景进行综合判断,AI虽能辅助影像识别和数据分析,但面对突发并发症或罕见病例时,医生的临床
- AI人工智能机器学习之监督线性模型
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器监督学习框架下的线性模型,以LinearRegression线性回归和LogisticRegression逻辑回归为示例,从代码层面测试和讲述监督学习中的线性模型。2、监督学习之线性模型-简介监督学习和线性模型是的两个重要概念。监督学习是一种机器学习任务,其中模型在已标记的数据集上进行训练。线性模型是一类通过线性组合输入特征来进行预测的模型。线性模型的基本形式可
- 大数据模型:技术赋能,引领未来
大模型教程
人工智能AI大模型大模型语言模型
随着互联网、物联网、人工智能等技术的飞速发展,我们正身处一个数据爆炸的时代。数据,已经成为这个时代最为宝贵的资源之一。而如何挖掘和利用这些海量数据,为企业和社会创造价值,正是大数据模型所追求的目标。本文将从以下几个方面对大数据模型进行探讨:概述、技术原理、应用场景、挑战与发展趋势。一、概述大数据模型是一种基于数据挖掘和机器学习技术的分析方法,通过对海量数据进行处理和分析,挖掘出有价值的信息和知识,
- 人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具
学步_技术
自动驾驶人工智能人工智能深度学习自动驾驶机器学习
人工智能深度学习系列—深度解析:交叉熵损失(Cross-EntropyLoss)在分类问题中的应用人工智能深度学习系列—深入解析:均方误差损失(MSELoss)在深度学习中的应用与实践人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具人工智能深度学习系列—探索余弦相似度损失:深度学习中的相似性度量神器人工智能深度学习系列—深度学习中的边界框回归新贵:GHM(GeneralizedH
- 解读 DeepSeek 关键 RL 算法 GRPO
进一步有进一步的欢喜
LLM算法DeepSeekGRPO
DeepSeekGRPO:面向超大规模RLHF的梯度正则化策略优化算法引言在当下人工智能蓬勃发展的浪潮里,DeepSeek无疑是一颗耀眼的明星,频繁出现在各类科技前沿讨论中,热度持续攀升。从惊艳的模型表现,到不断拓展的应用场景,DeepSeek正以强劲之势重塑着行业格局。大家不难发现,无论是复杂的自然语言处理任务,还是充满挑战的智能推理难题,DeepSeek都能展现出卓越的性能。而这斐然成绩的背后
- 详细介绍人工智能学习框架
日记成书
反正看不懂系列人工智能
人工智能学习框架是开发者用于构建、训练和部署机器学习模型的核心工具。以下从框架分类、核心框架介绍、学习方法三个维度展开详解:一、主流人工智能框架全景图(一)基础框架层TensorFlow(Google)核心优势:工业级部署能力,支持移动端(TFLite)、浏览器(TF.js)、服务器(TFServing)特色功能:SavedModel格式跨平台兼容,XLA编译器优化计算图适用场景:生产环境部署、大
- 【深度学习】Transformer入门:通俗易懂的介绍
知识靠谱
深度学习深度学习transformer人工智能
【深度学习】Transformer入门:通俗易懂的介绍一、引言二、从前的“读句子”方式三、Transformer的“超级阅读能力”四、Transformer是怎么做到的?五、Transformer的“多视角”能力六、Transformer的“位置记忆”七、Transformer的“翻译流程”八、Transformer为什么这么厉害?九、Transformer的应用十、总结一、引言在自然语言处理(N
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><