- Python的LibreOffice命令行详解:自动化文档处理的终极指南
在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键。LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python脚本,可实现从格式转换到复杂文档操作的全面自动化。本文将深入解析如何通过Python调用LibreOffice命令行工具,覆盖从基础操作到高级场景的完整流程。一、环境搭建:三步构建自动化基石1.安装LibreOffice与PythonLinux系统:sudoapti
- 如何高效训练通义万相2.1的LoRA:从原理到实战指南
Liudef06小白
AI作画图生视频lora通义万相WAN2.1
在AI图像生成领域,通义万相2.1作为领先的扩散模型,其官方API虽功能强大,但定制能力有限。LoRA(Low-RankAdaptation)技术正是解决这一痛点的关键钥匙——它允许开发者以极低成本实现模型个性化定制。本文将详细解析训练通义万相2.1LoRA的全流程,助你掌握定制专属AI艺术家的核心技能。一、认识通义万相2.1与LoRA1.1通义万相2.1核心特性多模态理解:精准解析复杂文本提示(
- RAGFlow是一个基于深度文档理解的开源RAG引擎
lyh1344
深度优先
RAGFlow概述RAGFlow是一款基于深度文档理解的开源RAG(检索增强生成)引擎,专注于处理复杂文档结构并提供精准的语义检索与生成能力。其核心优势在于结合多模态文档解析和智能分段技术,优化传统RAG流程中的信息提取与答案生成效果。核心特性深度文档理解支持PDF、PPT、Word、Excel等格式的解析,通过OCR、表格识别、布局分析等技术提取文本、图表及结构化数据,解决传统RAG中非文本内容
- 从实验室到产业:IndexTTS 在六大核心场景的落地实践
gogoMark
人工智能
一、内容创作:重构数字内容生产范式在短视频创作领域,IndexTTS的语音克隆技术彻底改变了配音流程。B站UP主通过5秒参考音频即可克隆出郭老师音色,生成的“各位吴彦祖们大家好”语音相似度达97%,单条视频播放量突破百万。其核心优势在于支持多语言混合输入,中英文混杂文本(如“大家好,我现在正在bilibili体验AI科技”)的自然度评分达0.796,接近人类基准0.85。通过批次推理模式,用户可将
- SQL字符串截取函数全解析:LEFT、RIGHT、SUBSTRING 实战指南
阿蒙Armon
SQLServersql算法数据库sqlserver
SQL字符串截取函数全解析:LEFT、RIGHT、SUBSTRING实战指南一、引言:字符串处理在SQL中的核心地位在数据清洗、报表开发、ETL流程中,字符串处理是SQL编程的高频操作。无论是从复杂文本中提取关键信息,还是对数据进行格式化处理,掌握字符串截取函数都是必备技能。本文将系统解析SQL中最常用的三个字符串截取函数:LEFT、RIGHT和SUBSTRING,通过语法解析、参数说明和实战示例
- LayoutLM模型使用记录
Mark_Aussie
nlp人工智能
在文档处理和信息提取领域,如何让机器精准地理解和处理复杂文档是一个挑战。文档不仅包含文本信息,还包括布局、图像等非文本元素,这些元素在传递信息时起着至关重要的作用,而传统的NLP模型通常忽略了这些视觉元素。LayOutLM是一种创新的深度学习模型,结合了传统的文本处理能力和对文档布局的理解,从而在处理包含丰富布局信息的文档时表现出色。例如,在处理一份报告时,用户不仅关注报告中的文字内容,还会关注图
- 本地部署dify+ragflow+deepseek ,结合小模型实现故障预测,并结合本地知识库和大模型给出维修建议
算法小菜鸟成长心得
语言模型
1.准备工作使用ollama拉取deepseek-r1:7b官网下载ollamaollamarundeepseek-r1:7bollamalistRagflow专注于构建基于检索增强生成(RAG)的工作流,强调模块化和轻量化,适合处理复杂文档格式和需要高精度检索的场景。Dify则旨在降低大型语言模型(LLM)应用开发的门槛,提供低代码甚至无代码的开发体验,适合快速构建和部署多种AI应用。因此文档处
- 【课堂笔记】生成对抗网络 Generative Adversarial Network(GAN)
zyq~
机器学习笔记生成对抗网络人工智能机器学习概率论GAN
文章目录问题背景原理更新过程判别器生成器问题背景 一方面,许多机器学习任务需要大量标注数据,但真实数据可能稀缺或昂贵(如医学影像、稀有事件数据)。如何在少量数据中达到一个很好的训练效果是一个很重要的问题。 另一方面,传统生成模型(如变分自编码器VAE)生成的样本往往模糊或缺乏多样性,难以捕捉真实数据的复杂分布(如高分辨率图像、复杂文本等)。 生成式对抗网络(GAN)提出了用生成器(Gener
- 高精度文档解析利器:Mistral OCR 全面解析与技术应用
gs80140
AIocrMistral
目录高精度文档解析利器:MistralOCR全面解析与技术应用一、什么是MistralOCR?二、MistralOCR的核心特点✅1.支持复杂文档结构解析✅2.高识别精度✅3.与AI系统深度集成✅4.可扩展性与容错能力三、技术原理简述四、如何在OpenWebUI中启用MistralOCR?✅步骤一:上传文档✅步骤二:选择加载器为"MistralOCR"✅步骤三:进入对话或知识检索五、应用场景与实践
- Hive优化原则及对应优化方法
datacode_wud
Hivehivehadoopbigdata
Hive优化未经允许禁止转载A、执行过程查询B、优化原则1、提前过滤数据列剪裁子查询过滤分区剪裁写明连接条件2、减少Job多表选用相同key连接unionall减少groupby使用使用同一表unionall合理使用UDTF函数3、解决数据倾斜小表放前大表放后使用mapjoin使用map端groupby4、设置合理的mapreduce的task数复杂文件增加map个数小文件合并map前合并mapr
- AI日报 - 2025年05月19日
NingboWill
AI日报人工智能
一、【行业深度】1.腾讯混元图像2.0发布:实时生图毫秒级速度与超写实画质热点聚焦:腾讯发布了混元图像2.0模型,大幅提升了AI图像生成的速度和质量,并新增了实时绘画板功能。新模型结合高效的图像编解码器和全新的扩散架构,实现了毫秒级响应速度,同时增强了图像的真实感与细节丰富度,在GenEval基准测试中表现出色。⚡进展追踪:腾讯混元2.0不仅在生图速度上领先,还提升了复杂文本指令的理解准确率至95
- Python爬虫学习路径与实战指南 05
晨曦543210
学习
一、数据清洗与预处理的魔鬼细节1.非结构化文本处理正则表达式进阶:用命名分组提取复杂文本。importretext="价格:¥199.00折扣价:¥159.00"pattern=r"价格:¥(?P\d+\.\d{2})折扣价:¥(?P\d+\.\d{2})"match=re.search(pattern,text)print(match.groupdict())#{'price':'199.00'
- 【Python爬虫实战】正则:从基础字符匹配到复杂文本处理的全面指南
易辰君
python爬虫python爬虫开发语言
个人主页:https://blog.csdn.net/2401_86688088?type=blog系列专栏:https://blog.csdn.net/2401_86688088/category_12797772.html目录前言一、正则表达式(一)正则表达式的基本作用(二)正则表达式的基本组成(三)常用的正则表达式示例(四)正则表达式的应用场景二、re模块的介绍(一)re模块中的常用函数(二
- Windows系统下MinerU的CUDA加速配置指南
林语微光
论文翻译python从入门到实践windowsmineru接口调用人工智能
Windows系统下MinerU的CUDA加速配置指南快速解锁GPU性能,提升文档解析效率1、简介MinerU是一款高效的文档解析工具,支持通过CUDA加速显著提升处理速度。本指南详细说明如何在Windows系统中配置CUDA环境,并启用MinerU的GPU加速功能,帮助用户充分利用NVIDIA显卡的计算能力,优化复杂文档的解析效率。2、前提条件在开始配置前,请确保满足以下条件:硬件要求:NVID
- 【RAG 篇】【多模态文档理解框架与文档大模型全景解析【开发者实战指南】
大F的智能小课
大模型理论和实战人工智能深度学习算法
引言随着金融票据、医疗报告等场景的数字化需求激增,传统OCR技术已无法满足复杂文档的理解需求。本文将深入解析6多模态文档理解框架和3大文档专用LLM,提供从技术选型到落地评估的全链路指南,所有项目均经2024年6月实测验证。一、多模态文档理解框架(一)Donut(NAVER,2022)技术亮点:端到端无OCR架构,直接解析PDF/图片。支持文档视觉问答(DocVQA)。在CORD数据集F1达95.
- 文件有几十个T,需要做rag,用ragFlow能否快速落地呢?
努力努力再努力呐
PyTorchpython多模态RAG学习pytorchhuggingface多模态OpenCompass
一、RAGFlow的优势1、RAGFlow处理大规模数据性能:(1)、RAGFlow支持分布式索引构建,采用分片技术,能够处理TB级数据。(2)、它结合向量搜索和关键词搜索,提高检索效率。(3)、通过智能文档分块和混合检索机制,优化大规模数据处理。2、实际应用案例:(1)、RAGFlow被用于历史辅导助手、机加工行业设备维保等场景。(2)、这些案例展示了RAGFlow在解析复杂文档和提高检索效率方
- WPS Office安卓版文档编辑功能与兼容性评测【高效编辑】
电脑高手-小林
wpsandroid
一、界面设计与操作体验WPSOffice安卓版采用简洁直观的界面设计,首页默认展示近期文档列表,支持一键新建文档、表格或演示文稿。整体操作逻辑与PC端保持一致,新用户也能快速上手。编辑工具栏设计合理,常用功能如字体设置、段落调整、插入图片等均可直接访问,提升编辑效率。文档编辑过程中支持多指缩放、滑动对齐、长按选中等移动端专属操作,使得在手机上处理复杂文档成为可能。此外,WPS提供了云文档功能,可实
- Python正则表达式有哪些常用匹配字符?
程序员总部
pythonpython正则表达式mysql
处理文本数据时,我们经常需要查找、提取或替换特定模式的字符串。这时候正则表达式就成了程序员最强大的武器之一。今天我们就来详细聊聊Python中那些最常用的正则表达式字符和它们的实际用法。为什么要学正则表达式?假设你遇到这些场景:从日志中提取所有日期时间验证用户输入的邮箱格式是否正确批量修改代码中的变量名抓取网页中的特定数据用普通字符串方法处理这些需求会很麻烦!正则表达式能让你用简洁的模式描述复杂文
- 图像处理有哪些核心技术?技术发展现状如何?
合合信息解决方案
图像处理
在数字化信息爆炸的时代,文档图像预处理技术正悄然改变着我们处理文字信息的方式。无论是手持拍摄的收据、扫描仪中的身份证,还是工业机器人采集的复杂文档,预处理技术都在背后默默提升着OCR(光学字符识别)系统的性能。在合合信息发布的《2025智能文档技术与应用白皮书》一书中,视角也集中在了文档图像预处理技术上!在白皮书介绍中,作为OCR流程中的关键一步,在文档图像预处理领域,核心技术进一步细化为切边处理
- 两层检索策略:摘要检索 + 内容检索在 RAG 中的实践
佑瞻
RAGRAGpythonllamaindex分层检索
在企业级RAG系统开发中,面对成百上千的复杂文档,我们常常会陷入这样的困境:直接检索原始内容容易被海量细节淹没,只依赖摘要又担心丢失关键信息。有没有一种方案能兼顾「全局视角」和「细节把控」?今天我们分享一种「摘要检索+内容检索」的两层检索策略,通过LlamaIndex框架实现摘要与原始内容的分层管理与递归检索,帮我们在复杂知识环境中找到精准答案。一、分层检索的核心思想:先定位「知识地图」,再深挖「
- 开源的7B参数OCR视觉大模型:RolmOCR
Panesle
前沿ocr人工智能大模型开源
1.背景介绍早些时候,AllenInstituteforAI发布了olmOCR,这是一个基于Qwen2-VL-7B视觉语言模型(VLM)的开源工具,用于处理PDF和其他复杂文档的OCR(光学字符识别)。开发团队对该工具的高质量和开源特性感到兴奋,并探索了如何利用更新的基础模型和一些轻量级优化来进一步改进它。2.RolmOCR的发布开发团队开发了RolmOCR,作为olmOCR的替代方案。它具有以下
- 小体积大智慧!IBM开源的文档解析神器SmolDocling如何让复杂文档处理变得简单高效?
遇见小码
AI棱镜实验室开源人工智能运维AIGC
每天面对扫描文件、手写笔记、代码截图等复杂文档,你是否还在手动整理排版?今天介绍的这款由IBM与HuggingFace联合推出的开源模型SmolDocling,或许能成为你的效率救星。它仅需256MB内存,就能将图片中的文字、代码、公式、图表等元素一键转为结构化文档,彻底解放你的双手!一、SmolDocling是什么?SmolDocling是基于视觉语言模型(VLM)技术开发的文档处理工具,属于轻
- 日常偷懒(一)正则表达式小记
不知道叫什么呀
用AI满足我的好奇心正则表达式学习AIGC我的AI老师python
平时工作中有很多dritywork,学会偷懒之后真的可以帮我们省很多时间来摸鱼!而正则表达式是我们的偷懒必备装备,会用以后用起来会特别爽~。正则表达式(RegularExpression,简称Regex)是一种用于匹配和操作文本模式的字符串工具,通过特殊语法规则可以快速搜索、替换或提取复杂文本中的特定内容。以下通过概念拆解与实例说明其核心用法:一、基础概念1.核心功能模式匹配:验证字符串是否符合特
- LangChain教程 - RAG - PDF解析
花千树-010
LangChainlangchainpdfpythonAIGC
系列文章索引LangChain教程-系列文章在现代人工智能和自然语言处理(NLP)应用中,处理PDF文档是一项常见且重要的任务。由于PDF格式的复杂性,包含文本、图像、表格等多种内容结构,高效、准确地解析PDF需要强大的工具支持。LangChain提供了一套完善的PDF加载器(PDFLoader),支持从纯文本提取到复杂文档解析,并集成了OCR(光学字符识别)功能,能够处理扫描版PDF或包含嵌入图
- Java动态生成Word终极指南:poi-tl与Aspose.Words性能对比及选型建议
天机️灵韵
开源项目编程语言vscodeJavaword模板
在Java中实现复杂文档生成(如合同、报表)时,poi-tl、Aspose.Words和docx4j是三个主流的模板技术方案。以下是它们的核心对比和选型建议:1.poi-tl(基于ApachePOI的模板引擎)定位:轻量级开源库,基于ApachePOI封装,简化模板操作。核心优势:模板语法灵活:通过{{@var}}、{{?section}}等标签实现文本、表格、列表、图片的动态插入。代码简洁:相比
- 解析稳定率达99.99%!合合信息“大模型加速器2.0”助力AI打破“幻觉”
算法大数据人工智能图表表格
随着大模型在社会应用中逐渐普及,人们在享受便利的同时,也面临着“AI幻觉”产生的风险。训练数据是影响大模型“认知能力”的关键要素,近期,上海合合信息科技股份有限公司(简称“合合信息”)TextIn“大模型加速器2.0”版本正式上线,基于领先的智能文档处理技术,对复杂文档的版式、布局和元素进行精准解析及结构化处理,从数据源头降低大模型“幻觉”风险,让大模型在与人类的沟通中“更靠谱”。“大模型加速器2
- 如何快速提取PDF中的图片?这款免费工具让你事半功倍!
10211234567890
pdf编辑pdfpdf提取图片pdf数据提取pdf提取
在日常学习和工作中,PDF文件几乎成了我们处理文档的标配。但你是否遇到过这样的烦恼:想从PDF里提取图片,却只能手动截图,效率低还容易模糊?尤其是面对几十页的复杂文档,简直让人抓狂……别急!今天分享一个亲测高效的解决方案——完全免费、无需注册、一键提取PDF图片的工具,3分钟搞定难题!为什么你需要专业的PDF图片提取工具?手动截图太麻烦:图片位置分散、尺寸不一,截图后还需裁剪整理,耗时耗力。图片质
- 主流开源大模型能力对比矩阵
时光旅人01号
人工智能开源python深度学习pytorch
模型名称核心优势主要局限Llama2/3✅多语言生态完善✅Rotary位置编码✅GQA推理加速⚠️数据时效性差⚠️隐私保护不足Qwen✅千亿参数规模✅中文语境优化✅复杂文本生成⚠️需高性能硬件⚠️领域知识需二次训练ChatGLM-3✅多轮对话支持✅中英双语流畅✅对话记忆优秀⚠️计算资源消耗大⚠️长文本易发散DeepSeek✅代码注释生成✅技术文档规范✅全流程方案生成⚠️逻辑错误较多⚠️数据更新延迟
- 正则表达式捕获组详解:从入门到掌握
漠月瑾-西安
前端小问题点记录正则表达式javascript前端
正则表达式捕获组详解:从入门到掌握1.什么是捕获组(CaptureGroup)?捕获组是正则表达式中用于==捕获子匹配内容==的语法,通过()包裹的部分会被单独记录。它是处理复杂文本匹配时最常用的功能之一。关键特性提取子内容:从完整匹配中分离出特定部分索引编号:从左到右按(出现的顺序分配编号(从1开始)复用匹配:可在同个正则表达式中反向引用2.基础语法与示例2.1简单捕获组cons
- Mistral 发布 Mistral OCR,号称「世界上最好的 OCR 模型」
自不量力的A同学
ocr
Mistral发布的MistralOCR号称“世界上最好的OCR模型”,以下是对它的详细介绍:产品概述MistralOCR是一种光学字符识别API,以图像和PDF作为输入,可从有序交错的文本和图像中提取内容,能理解文档的每个元素,包括媒体、文本、表格、公式等,可与RAG系统结合,处理多模式文档。核心优势顶尖的复杂文档理解能力:可精准识别科学论文、技术文献中的图表、公式(含LaTeX)、表格及混合排
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><