无条件图像生成是扩散模型的一种流行应用,它生成的图像看起来像用于训练的数据集中的图像。通常,通过在特定数据集上微调预训练模型来获得最佳结果。你可以在HUB找到很多这样的模型,但如果你找不到你喜欢的模型,你可以随时训练自己的模型!
本教程将教您如何在 Smithsonian Butterflies 数据集的子集上从头开始训练 UNet2DModel 以生成您自己的蝴蝶。
本培训教程基于“扩散器训练”笔记本。有关扩散模型的更多详细信息和背景信息,例如它们的工作原理,请查看笔记本!
在开始之前,请确保已安装 Datasets 以加载和预处理图像数据集,并安装 Accelerate 以简化任意数量的 GPU 上的训练。以下命令还将安装 TensorBoard 来可视化训练指标(您还可以使用权重和偏差来跟踪您的训练)。
# uncomment to install the necessary libraries in Colab
#!pip install diffusers[training]
我们鼓励您与社区分享您的模型,为此,您需要登录您的 Hugging Face 帐户(如果您还没有帐户,请在此处创建一个!您可以从笔记本登录,并在出现提示时输入您的令牌。确保您的令牌具有写入角色。
from huggingface_hub import notebook_login
notebook_login()
或从终端登录:
huggingface-cli login
由于模型非常大,因此安装 Git-LFS 来对这些大文件进行版本控制:
!sudo apt -qq install git-lfs
!git config --global credential.helper store
为方便起见,创建一个包含训练超参数的 TrainingConfig
类(随意调整它们):
from dataclasses import dataclass
@dataclass
class TrainingConfig:
image_size = 128 # the generated image resolution
train_batch_size = 16
eval_batch_size = 16 # how many images to sample during evaluation
num_epochs = 50
gradient_accumulation_steps = 1
learning_rate = 1e-4
lr_warmup_steps = 500
save_image_epochs = 10
save_model_epochs = 30
mixed_precision = "fp16" # `no` for float32, `fp16` for automatic mixed precision
output_dir = "ddpm-butterflies-128" # the model name locally and on the HF Hub
push_to_hub = True # whether to upload the saved model to the HF Hub
hub_model_id = "/" # the name of the repository to create on the HF Hub
hub_private_repo = False
overwrite_output_dir = True # overwrite the old model when re-running the notebook
seed = 0
config = TrainingConfig()
您可以使用 Datasets 库轻松加载 Smithsonian Butterflies 数据集:
from datasets import load_dataset
config.dataset_name = "huggan/smithsonian_butterflies_subset"
dataset = load_dataset(config.dataset_name, split="train")
您可以从HugGan 社区活动中找到其他数据集,也可以通过创建本地 ImageFolder
.如果数据集来自 HugGan 社区活动,或者 imagefolder
您使用的是自己的图像,请设置为 config.dataset_name
数据集的存储库 ID。
数据集使用Image功能自动解码图像数据并将其加载为 PIL.Image 我们可以可视化的:
import matplotlib.pyplot as plt
fig, axs = plt.subplots(1, 4, figsize=(16, 4))
for i, image in enumerate(dataset[:4]["image"]):
axs[i].imshow(image)
axs[i].set_axis_off()
fig.show()
不过,这些图像的大小各不相同,因此您需要先对它们进行预处理:
Resize
将图像大小更改为中 config.image_size
定义的大小。RandomHorizontalFlip
通过随机镜像图像来扩充数据集。Normalize
将像素值重新缩放到 [-1, 1] 范围非常重要,这是模型所期望的。from torchvision import transforms
preprocess = transforms.Compose(
[
transforms.Resize((config.image_size, config.image_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
请随意再次可视化图像,以确认它们已调整大小。现在,您可以将数据集包装在 DataLoader 中进行训练了!
import torch
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True)
扩散器中的预训练模型可以很容易地从其模型类中使用所需的参数创建。例如,若要创建 UNet2DModel:
from diffusers import UNet2DModel
model = UNet2DModel(
sample_size=config.image_size, # the target image resolution
in_channels=3, # the number of input channels, 3 for RGB images
out_channels=3, # the number of output channels
layers_per_block=2, # how many ResNet layers to use per UNet block
block_out_channels=(128, 128, 256, 256, 512, 512), # the number of output channels for each UNet block
down_block_types=(
"DownBlock2D", # a regular ResNet downsampling block
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D", # a ResNet downsampling block with spatial self-attention
"DownBlock2D",
),
up_block_types=(
"UpBlock2D", # a regular ResNet upsampling block
"AttnUpBlock2D", # a ResNet upsampling block with spatial self-attention
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
),
)
快速检查示例图像形状是否与模型输出形状匹配通常是一个好主意:
sample_image = dataset[0]["images"].unsqueeze(0)
print("Input shape:", sample_image.shape)
print("Output shape:", model(sample_image, timestep=0).sample.shape)
接下来,您需要一个调度程序来向图像添加一些噪点。
调度程序的行为会有所不同,具体取决于您是使用模型进行训练还是推理。在推理过程中,调度器会从噪声中生成图像。在训练过程中,调度器从扩散过程中的特定点获取模型输出或样本,并根据噪声调度和更新规则将噪声应用于图像。
让我们看一下DDPMScheduler 并使用该 add_noise
方法在 sample_image
前面添加一些随机噪声:
import torch
from PIL import Image
from diffusers import DDPMScheduler
noise_scheduler = DDPMScheduler(num_train_timesteps=1000)
noise = torch.randn(sample_image.shape)
timesteps = torch.LongTensor([50])
noisy_image = noise_scheduler.add_noise(sample_image, noise, timesteps)
Image.fromarray(((noisy_image.permute(0, 2, 3, 1) + 1.0) * 127.5).type(torch.uint8).numpy()[0])
该模型的训练目标是预测添加到图像中的噪声。这一步的损失可以通过以下方式计算:
import torch.nn.functional as F
noise_pred = model(noisy_image, timesteps).sample
loss = F.mse_loss(noise_pred, noise)
到现在为止,你已经有了开始训练模型的大部分,剩下的就是把所有东西放在一起。
首先,您需要一个优化器和一个学习率调度器:
from diffusers.optimization import get_cosine_schedule_with_warmup
optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)
lr_scheduler = get_cosine_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=config.lr_warmup_steps,
num_training_steps=(len(train_dataloader) * config.num_epochs),
)
然后,您需要一种方法来评估模型。为了进行评估,您可以使用 DDPMPipeline 生成一批示例图像并将其另存为网格:
from diffusers import DDPMPipeline
from diffusers.utils import make_image_grid
import os
def evaluate(config, epoch, pipeline):
# Sample some images from random noise (this is the backward diffusion process).
# The default pipeline output type is `List[PIL.Image]`
images = pipeline(
batch_size=config.eval_batch_size,
generator=torch.manual_seed(config.seed),
).images
# Make a grid out of the images
image_grid = make_image_grid(images, rows=4, cols=4)
# Save the images
test_dir = os.path.join(config.output_dir, "samples")
os.makedirs(test_dir, exist_ok=True)
image_grid.save(f"{test_dir}/{epoch:04d}.png")
现在,您可以使用 Accelerate 将所有这些组件打包到训练循环中,以便轻松进行 TensorBoard 日志记录、梯度累积和混合精度训练。若要将模型上传到 Hub,请编写一个函数来获取存储库名称和信息,然后将其推送到 Hub。
下面的训练循环可能看起来令人生畏且漫长,但当您稍后仅用一行代码启动训练时,这将是值得的!如果您迫不及待地想要开始生成图像,请随时复制并运行下面的代码。您以后可以随时返回并更仔细地检查训练循环,例如在等待模型完成训练时。
from accelerate import Accelerator
from huggingface_hub import create_repo, upload_folder
from tqdm.auto import tqdm
from pathlib import Path
import os
def train_loop(config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler):
# Initialize accelerator and tensorboard logging
accelerator = Accelerator(
mixed_precision=config.mixed_precision,
gradient_accumulation_steps=config.gradient_accumulation_steps,
log_with="tensorboard",
project_dir=os.path.join(config.output_dir, "logs"),
)
if accelerator.is_main_process:
if config.output_dir is not None:
os.makedirs(config.output_dir, exist_ok=True)
if config.push_to_hub:
repo_id = create_repo(
repo_id=config.hub_model_id or Path(config.output_dir).name, exist_ok=True
).repo_id
accelerator.init_trackers("train_example")
# Prepare everything
# There is no specific order to remember, you just need to unpack the
# objects in the same order you gave them to the prepare method.
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
global_step = 0
# Now you train the model
for epoch in range(config.num_epochs):
progress_bar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process)
progress_bar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(train_dataloader):
clean_images = batch["images"]
# Sample noise to add to the images
noise = torch.randn(clean_images.shape, device=clean_images.device)
bs = clean_images.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bs,), device=clean_images.device,
dtype=torch.int64
)
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)
with accelerator.accumulate(model):
# Predict the noise residual
noise_pred = model(noisy_images, timesteps, return_dict=False)[0]
loss = F.mse_loss(noise_pred, noise)
accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
global_step += 1
# After each epoch you optionally sample some demo images with evaluate() and save the model
if accelerator.is_main_process:
pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler)
if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1:
evaluate(config, epoch, pipeline)
if (epoch + 1) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1:
if config.push_to_hub:
upload_folder(
repo_id=repo_id,
folder_path=config.output_dir,
commit_message=f"Epoch {epoch}",
ignore_patterns=["step_*", "epoch_*"],
)
else:
pipeline.save_pretrained(config.output_dir)
这可是一大堆代码啊!但是您终于可以使用 Accelerate 的notebook_launcher功能启动培训了。向函数传递训练循环、所有训练参数和进程数(您可以将此值更改为可用的 GPU 数)以用于训练:
from accelerate import notebook_launcher
args = (config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler)
notebook_launcher(train_loop, args, num_processes=1)
训练完成后,查看扩散模型生成的最终图像!
import glob
sample_images = sorted(glob.glob(f"{config.output_dir}/samples/*.png"))
Image.open(sample_images[-1])