- 《数字时代的职场暗战:下班后的消息该不该回?》
玩转数据库管理工具FOR DBLENS
项目管理数据库大数据数据库开发数据仓库
一、赛博朋克式职场:永不熄灭的手机屏幕凌晨1点,手机屏幕在床头柜上第7次亮起,弹出的消息提示像一把悬在空中的达摩克利斯之剑——市场部总监在项目群@全体成员核对数据,客户发来20条59秒的语音方阵。这种场景已成为当代职场人的集体记忆:某招聘平台数据显示,78%的职场人遭遇过非工作时间工作消息轰炸,其中32%因此产生焦虑症状。当钉钉提示音成为新的"午夜凶铃",微信对话框化作24小时待命的电子镣铐,我们
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
人工智能深度学习deepseek机器学习算法
大语言模型微调和大语言模型应用的区别?关键要点微调大型语言模型(LLM)是调整预训练模型以适应特定任务或领域的过程,研究表明这能显著提升性能。大型语言模型应用是指将LLM用于实际问题解决或任务执行,如聊天机器人或文本生成。微调和应用的不同在于:微调是准备阶段,应用是最终使用;使用微调模型通常在特定领域表现更好,而预训练模型更适合通用任务。什么是微调大型语言模型?微调大型语言模型是指取一个已经预训练
- 【C++开源库】tinyxml2解析库使用介绍
小庞在加油
C++知识c++开源tinyxml2解析库
TinyXML-2是一个在C++中使用的轻量级、简单且高效的XML解析库。它由LeeThomason开发,旨在提供快速解析和生成XML数据的功能,同时保持代码的简洁性和易于使用。TinyXML-2支持多种编译器和平台,包括Windows、Linux和macOS。特点与优势简单易用:TinyXML-2提供了直观的API,使得解析和生成XML文档变得简单。高性能:它经过优化,能够快速解析大型XML文件
- 中大型企业绩效考核管理主流系统对比:北森、i人事等
绩效管理软件
本文将深入对比8款适合中大型企业绩效考核系统:1.i人事;2.Moka;3.用友NC;4.金蝶;5.SAPSuccessFactors;6.北森;7.明道绩效考核系统;8.KronosWorkforceReady。在竞争激烈的商业环境中,一套高效的绩效考核系统不仅能激发员工潜力,更是推动中大型企业管理升级的核心引擎。如何在众多产品中找到既精准又具前瞻性的解决方案?本文将深入评测15款经过市场严格检
- DeepSeek、Grok 与 ChatGPT 三巨头:技术架构与应用场景的全方位解析
云策量化
Deepseekchatgptdeepseekgrok
前言在当今人工智能领域,DeepSeek、Grok和ChatGPT作为语言模型的三巨头,各自凭借独特的技术架构和广泛的应用场景,在自然语言处理领域占据着重要地位。本文将对这三款模型的技术架构和应用场景进行全方位解析,以期为读者提供深入的了解和有价值的参考。一、技术架构(一)DeepSeekDeepSeek是由DeepSeek团队开发的一款大型语言模型,其技术架构基于深度学习中的Transforme
- 探索AI模型的巅峰之战:ChatGPT、DeepSeek与Grok 3,谁才是最强?
温暖阳光阿斌
人工智能chatgpt
近年来,人工智能领域正处于一场高速迭代的革命中。大型语言模型(LLMs)如ChatGPT、DeepSeek和Grok3纷纷亮相,各展所长,为人们带来了前所未有的体验。在这场"谁是最强"的竞争中,每一方都展现出了令人惊叹的能力和独特的优势。然而,这些模型之间的差异和特点,究竟是什么?它们各自的优势在哪里?又有哪些隐藏的短板?本文将带您深入了解这三位AI巨头的亮点与争议,共同探讨它们在AI领域的位置,
- 一文说清预训练与微调:AI的双重训练法则
TGITCIC
AI-大模型的落地之道人工智能深度学习
什么是预训练?预训练是大型语言模型训练的第一步。它在资金和计算能力的支持下,通过深入分析大量的文本数据,使模型建立起语言的基本构架。在这一阶段,模型通过学习海量的书籍、文章和网页,识别出语言的语法、句法和词汇规律。这就如同一名学生接受通识教育,他并没有专注于某一门学科,而是获取了多方面的知识。自回归语言建模和掩码语言建模是预训练中常见的两种方法。前者在逐步构建文本的连贯性时,通过预测下一单词的方式
- 开发小型、专业、安全且可扩展的语言模型:Arcee的实用指南
fgayif
安全语言模型人工智能python
技术背景介绍在现代企业中,利用语言模型提升效率和推动创新已成为趋势。然而,大型语言模型(LLMs)的高资源消耗和安全性问题,往往让企业望而却步。为解决这些问题,Arcee提供了一种全新的解决方案:小型、专业、安全且可扩展的语言模型(SLMs)。通过SLM适配系统和无缝、可靠的集成,Arcee使企业能够充分发挥领域适应型语言模型的潜力。核心原理解析Arcee的核心在于其SLM适配系统,允许用户根据特
- MySQL的多租户和多云部署架构设计
vipfanxu
mysql数据库
引言MySQL是一种流行的关系型数据库管理系统,被广泛应用于大型企业和云计算环境中。随着云计算的兴起,多租户和多云部署的需求逐渐增加。本文将探讨MySQL在多租户和多云部署架构设计方面的考虑和实践。一、多租户部署架构设计多租户是指在一个系统中,通过虚拟化技术将多个租户隔离开来,每个租户都拥有自己的独立环境和资源。在MySQL的多租户部署架构设计中,需要考虑以下几个方面:数据库隔离、数据安全和性能优
- 使用LangGraph迁移MapReduceDocumentsChain进行长文档的摘要
dgay_hua
python
在大数据处理和文本分析领域,MapReduce是一种非常重要的策略,用于处理和分析大型数据集。具体到文本处理方面,MapReduceDocumentsChain구현了一种map-reduce策略,可以有效地处理长文本。本文将介绍如何从MapReduceDocumentsChain迁移到LangGraph,并探讨LangGraph在流处理、检查点恢复等方面的优势。技术背景介绍MapReduceDoc
- Qt上位机编程命名规范-执行版
有追求的菜鸟
qt开发语言
主要规范原则参考Qt上位机编程命名规范。1.文件/文件夹大小写分析考虑跨平台性,全小写是一种约定俗成的风格,在许多大型开源项目中(如Linux内核、Python标准库)被广泛使用。1.1.配合文件扩展名通常文件名小写配合小写扩展名(如.h,.cpp,.json),使整体风格统一:main.cppconfig.jsonutils.h1.2.文件夹和pri文件命名通常小写、下划线分开:control_
- 连续10年国内销售冠军,科沃斯在AWE发布新地宝X9系列
TMT星球
家电人工智能
3月20日,中国扫地机器人市场连续10年规模第一的服务机器人品牌,科沃斯机器人携全场景智慧清洁解决方案亮相AWE2025(中国家电及消费电子博览会)。作为服务机器人技术革新的引领者,科沃斯秉持"让机器人服务每个人"的品牌使命,在E1馆1F11/1F21携手添可智能生活电器,双品牌联动打造智能家居沉浸体验。据「TMT星球」了解,现场展出了行业首款双核旗舰洗地机器人地宝X9PRO、上市即登顶天猫&京东
- TCL空调携手中家院发布“SHE空调智慧健康绿色评价标准”
TMT星球
家电科技
3月20日,2025年TCL空调「智慧健康再进化」发布会于上海AWE圆满举办。据「TMT星球」了解,发布会现场,TCL空调携手中国家用电器研究院,联合发布《房间空气调节器智慧、健康和环境可持续评价规范》,以Smart(智慧)、Healthy(健康)、Environmental(环境可持续)为核心维度,首次构建空调行业智慧、健康、低碳的全链路标准,让用户购买智慧健康空调有标准可依、有标准可查。破解行
- 使用Dall-E生成图像:文本到图像的魔力
shuoac
计算机视觉人工智能python
使用Dall-E生成图像:文本到图像的魔力技术背景介绍Dall-E是OpenAI开发的一个强大的文本到图像生成模型,它能够根据自然语言描述创造出全新的数字图像。这一技术基于深度学习的方法,使得创意与AI图像生成的结合更具可能性。本文将介绍如何调用Dall-EAPI来生成图像,从而使开发者能够将这一技术应用到自己的项目中。核心原理解析Dall-E利用大型语言模型(LLM)从用户提供的文本描述中提取详
- 【蓝桥杯】真题 2386染色时间 (优先队列BFS)
遥感小萌新
蓝桥杯蓝桥杯宽度优先职场和发展
思路这里每一个格子染色多了时间这一层限制,相当于图的每一边有了权重的限制,那么我们就不能直接用双向队列求最短路。而是使用优先队列。规则是这样的:每一个节点可以多次入队,但是只有第一次出队有效。所以这次我们不会在加入队列时更改标签vis,而是在出队时更改标签。如果在出队时发现vis已经更改,这说明这个元素以前出过队列(不是第一次出队),则直接continuecode我们额外设置两个数组,vis标签数
- L1-7 撒狗粮(一分钟讲清差分)
小竹子14
算法
网络上称一对情侣秀恩爱为“撒狗粮”,因为单身人士统称为“单身狗”。在一个大型聚会上,所有宾客被安排坐在一张长条宴会桌边。如果一对情侣坐在一起,那么他们两人身边的单身狗就会被撒一脸狗粮;如果他们没有坐在一起,那么所有被夹在他们两人之间的单身狗都会被撒一脸狗粮。本题就请你找出被撒狗粮最多(以“脸”为单位)的那位单身人士。输入格式:输入第一行给出一个正整数N(≤50000),是已知情侣的对数;随后N行,
- 一切皆是映射:实现神经网络的硬件加速技术:GPU、ASIC(专用集成电路)和FPGA(现场可编程门阵列)
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
文章目录一切皆是映射:实现神经网络的硬件加速技术:GPU、ASIC(专用集成电路)和FPGA(现场可编程门阵列)1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.2.1GPU加速3.2.2ASIC加速3.2.3FPGA加速3.3算法优缺点GPUASICFPGA3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过
- 使用Annoy进行高效的近似最近邻搜索
eahba
前端javascriptangular.jspython
在处理大型数据集时,我们经常面临需要快速、准确地查找与给定查询点相近的数据点的问题。Annoy(ApproximateNearestNeighborsOhYeah)就是为解决此类问题而生的一个强大工具。Annoy是一个用C++编写并具有Python绑定的库,专用于在空间中搜索与给定查询点相近的点。它能够创建大型的只读文件数据结构,并映射到内存中,以便于多个进程共享相同的数据。技术背景介绍Annoy
- 基于PyCATIA的工程图视图锁定工具开发实战解析
Python×CATIA工业智造
CATIA二次开发python自动化
引言本文针对CATIA工程图设计中视图误操作问题,基于PySide6与PyCATIA库开发了一款轻量化视图锁定工具。通过Python二次开发实现全视图/选定视图快速锁定、非模态交互界面及状态实时反馈功能,有效提升大型装配体工程图操作效率。文章深度解析代码架构设计、关键技术实现及工程应用价值,提供完整的开发方法论。一、工具功能与工程应用场景1.1核心功能模块功能模块技术指标应用场景全视图锁定批量操作
- 解析大模型归一化:提升训练稳定性和性能的关键技术
秋声studio
口语化解析深度学习人工智能大模型归一化
引言在深度学习领域,特别是在处理大型神经网络模型时,归一化(Normalization)是一项至关重要的技术。它可以提高模型的训练稳定性和性能,在加速收敛方面发挥了重要作用。本文将深入探讨大模型归一化的原理、常见方法及其应用场景,并结合实际案例和代码示例进行说明。一、归一化的作用与理论基础归一化的主要目的是为了提高模型的训练稳定性和性能。具体来说,归一化有以下几个关键作用:提高训练稳定性:在神经网
- 新书速览|云原生Kubernetes自动化运维实践
全栈开发圈
云原生运维kubernetes
《云原生Kubernetes自动化运维实践》本书内容:《云原生Kubernetes自动化运维实践》以一名大型企业集群运维工程师的实战经验为基础,全面系统地阐述Kubernetes(K8s)在自动化运维领域的技术应用。《云原生Kubernetes自动化运维实践》共16章,内容由浅入深,逐步揭示K8s的原理及实际操作技巧。第1章引领读者踏入Kubernetes的世界,详细介绍其起源、核心组件的概念以及
- 使用Ollama部署开源大模型
好好学习 666
开源
Ollama是一个简明易用的本地大模型运行框架,可以一键启动启动并运行Llama3、Mistral、Gemma和其他大型语言模型。安装MacOS,Windows用户直接在官网下载页下载安装包即可。Linux系统运行如下命令安装curl-fsSLhttps://ollama.com/install.sh|sh使用Usage:ollama[flags]ollama[command]AvailableC
- AI巨浪中的安全之舵:天空卫士助力人工智能落地远航
天空卫士
人工智能安全数据安全网络安全大数据
"AI时代的安全战场,不在云端在本地;数据治理的胜负手,不在防御在认知。"近期,众多企业纷纷接入DeepSeek大模型,迅速推动了大型模型应用的广泛铺开。无论是在制造业、金融业,还是在医疗、教育等领域,DeepSeek大模型的应用都如火如荼,遍地开花,展现出了其广泛的应用前景和巨大的商业价值。顺势而来的是DeepSeek一体机以"低成本、高算力、私有化部署"的优势席卷企业市场。因为DeepSeek
- 经典DP——夜狼
_gxd_
DPc++数据结构
Description夜狼,也被称为黑狼,是非常大型的有力量的狼。据说大部分夜狼起源于德拉诺。夜狼看起来像普通的狼,但这些生物的大小几乎是普通狼的两倍。这些强大的野兽,长8-9尺,重600-800磅,是最有名的兽人坐骑。这些狼和人一样高,长着长牙,看起来像是能咬断铁棍一样。他们有火红色的眼睛,皮毛则是斑驳的黑色或灰色。野狼一般在卡利姆多和穆尔戈尔北部地区繁衍生息。夜狼是高效的猎群者,他们捕杀任何猎
- Git如何将一个分支上的修改转移到另一个分支
风继续吹..
Git基本指令git
在我们使用git进行版本控制时,当代码写错分支,怎么将这些修改转移到正确的分支上去呢?这时,我们可以使用gitstath命令来暂存我们的修改,然后再切换到其他分支未commit(提交)操作时1.先将修改存入暂存区gitadd.2.把暂存区内的修改存储起来gitstash3.切换到正确的分支gitcheckoutdev4.将存储的修改取出来gitstashpop已commit(提交)操作时需要撤回c
- DeepSeek的崛起:2025新春国产AI模型的全球影响力
耶耶Norsea
网络杂烩人工智能百度
摘要在2025年新春之际,国产AI模型DeepSeek以现象级的姿态迅速崛起,凭借免费、易用及高性能的特点,吸引了全球科技界的广泛关注。这款大型人工智能模型不仅展现了国产技术的实力,还为用户提供了高效便捷的使用体验,成为行业内的焦点。关键词DeepSeek崛起,2025新春,国产AI模型,免费易用,高性能特点一、国产AI的崭新篇章1.1DeepSeek的诞生背景在2025年新春之际,DeepSee
- LLM-Agent方法评估与效果分析
agent人工智能ai开发
1.引言近年来,随着大型语言模型(LLM)的快速发展,基于强化学习(RL)对LLM进行微调以使其具备代理(Agent)能力成为研究热点。从基础的单智能体强化学习算法(如PPO)到多智能体协作、语料重组以及在线自学习等新技术不断涌现,研究人员致力于探索如何提高LLM在实际应用中的决策能力、推理能力和任务执行效率。本文主要聚焦于当前LLM-Agent方法的检索与评估,旨在全面探讨各类方法的技术实现、实
- Python Web框架 Flask vs Django vs FastAPI
ZengDerby
pythonflaskfastapidjango
如果您需要构建大型的、功能丰富的应用程序,Django可能是一个很好的选择。如果您需要更灵活的框架,可以选择Flask来定制开发。而对于追求极致性能和高并发处理的项目,FastAPI可能是一个更加理想的选择。优缺点Flask在小型项目或微服务理想的选择。Flask灵活且轻量,非常适合快速开发小型应用。Flask是一个非常灵活的框架,它允许您根据项目需求进行定制。您可以根据需要选择合适的插件和扩展。
- 电脑分区c盘放多大最好,合理规划建议
惊鸿一梦q
电脑
电脑分区时C盘(系统盘)的大小设置是一个相对灵活的问题,它取决于多个因素,包括硬盘容量、操作系统类型、个人使用习惯以及未来可能的扩展需求等。以下是一些关于C盘大小设置的建议:操作系统需求:对于Windows操作系统,通常建议为系统盘预留至少50GB的空间。这是为了确保操作系统有足够的空间进行日常更新、临时文件存储以及系统缓存等操作。如果计划安装多个大型软件或游戏,或者需要存储大量的系统备份和恢复点
- 高效利用AI处理大型编程任务
大囚长
大模型人工智能
在大型编程任务中,通过将任务细分为适合AI上下文处理能力的子任务并整合生成目标应用,已成为当前AI辅助开发的主流方法。一、任务分解的核心策略模块化功能拆分通过分层架构设计将系统拆分为独立模块(如用户认证、支付接口、数据存储),每个模块的代码量控制在AI模型的上下文窗口内(如ClaudeMax的200k窗口可处理约2万行代码)。例如开发电商系统时,可分解为「购物车逻辑」「库存管理」「订单流水」等子模
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比