- 【机器学习理论基础】一文看尽朴素贝叶斯算法
大数据AI
MachineLearning机器学习
在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。对于大多数的分类算法,比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数Y=f(X)Y=f(X)Y=f(X),要么是条件分布P(Y∣X)P(Y|X)P(Y∣X)。但是朴素贝叶斯却是生成方法,也就是直接找出特征输出YYY和特征XXX的联合分布P(X,Y)P(X
- 朴素贝叶斯算法
YuanDaima2048
机器学习算法学习算法机器学习人工智能深度学习pythonsklearn
朴素贝叶斯算法一、基本概念二、算法及代码应用朴素贝叶斯NB算法分类算法区别其他机器学习算法:机器学习实战工具安装和使用一、基本概念朴素贝叶斯(NB)是一种基于贝叶斯定理与特征条件独立假设的分类算法。它被广泛应用于文本分类、垃圾邮件过滤等领域。朴素贝叶斯算法简单易懂,其核心思想是假设在给定目标值时,各个属性之间相互独立。在实际应用中,朴素贝叶斯算法在垃圾邮件过滤中表现出色。它不仅准确率高,而且速度快
- 机器学习入门--朴素贝叶斯原理与实践
Dr.Cup
机器学习入门机器学习概率论人工智能
朴素贝叶斯算法朴素贝叶斯是一种常用的分类算法,其基本思想是根据已有数据的特征和标签,学习出一个概率模型,并利用该模型对新样本进行分类。其优点在于简单快速、易于实现和解释,缺点在于对输入数据的分布做了严格的假设。具体来说,朴素贝叶斯分类器首先根据训练数据计算出每个类别的先验概率P©,即样本中每个类别占比。然后,对于给定的待分类样本,计算出它属于每个类别的条件概率P(X|C),其中X表示样本的特征向量
- sklearn中一些简单机器学习算法的使用
橘柚jvyou
机器学习sklearn算法
目录前言KNN算法决策树算法朴素贝叶斯算法岭回归算法线性优化算法前言本篇文章会介绍一些sklearn库中简单的机器学习算法如何使用,一些注释已经写在代码中,帮助一些小伙伴入门sklearn库的使用。注意:本篇文章只涉及到如何使用,并不会讲解原理,如果想了解原理的小伙伴请自行搜索其他技术博客或者查看官方文档。KNN算法fromsklearn.datasetsimportload_iris#导入莺尾花
- 【初中生讲机器学习】5. 从概率到朴素贝叶斯算法,一篇带你看明白!
Geeker · LStar
人工智能机器学习算法机器学习算法人工智能分类算法监督学习朴素贝叶斯
创建时间:2024-02-04最后编辑时间:2024-02-05作者:Geeker_LStar你好呀~这里是Geeker_LStar的人工智能学习专栏,很高兴遇见你~我是Geeker_LStar,一名初三学生,热爱计算机和数学,我们一起加油~!⭐(●’◡’●)⭐那就让我们开始吧!上两篇文章中,我详细讲了支持向量机(SVM)算法的原理,并用一个实例实现了它。在这一篇和下一篇中,我将分别讲解&实现朴素
- 机器学习:朴素贝叶斯笔记
Ningbo_JiaYT
机器学习机器学习笔记分类算法
朴素贝叶斯(NaiveBayes)是一种基于贝叶斯定理的简单概率分类算法,广泛应用于机器学习和数据挖掘中。“朴素”体现在对特征之间的独立性做出了假设,即一个特征或者一个属性的出现不依赖于其他特征的出现。目录基本原理1.贝叶斯定理2.朴素的独立性假设贝叶斯定理1.简介2.贝叶斯公式算法过程1.训练模型2.预测类别类型注意事项基本原理1.贝叶斯定理朴素贝叶斯算法的核心是贝叶斯定理,即对于给定的样本数据
- 图解机器学习 | 朴素贝叶斯算法详解
Dashesand
机器学习算法人工智能
图解机器学习|朴素贝叶斯算法详解引言在众多机器学习分类算法中,本篇我们提到的朴素贝叶斯模型,和其他绝大多数分类算法都不同,也是很重要的模型之一。在机器学习中如KNN、逻辑回归、决策树等模型都是判别方法,也就是直接学习出特征输出YYY和特征XXX之间的关系(决策函数Y=f(X)Y=f(X)Y=f(X)或者条件分布P(Y∣X)P(Y|X)P(Y∣X))。但朴素贝叶斯是生成方法,它直接找出特征输出YYY
- 机器学习 | 探索朴素贝叶斯算法的应用
亦世凡华、
#机器学习机器学习算法人工智能朴素贝叶斯经验分享
朴素贝叶斯算法是一种基于贝叶斯定理和特征条件独立假设的分类算法。它被广泛应用于文本分类、垃圾邮件过滤、情感分析等领域,并且在实际应用中表现出色。朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法:1)对于给定的待分类项r,通过学习到的模型计算后验概率分布。2)此项出现的条件下各个目标类别出现的概率,将后验概率最大的类作为α所属的类别。核心思想:是利用特征之间的条件独立性,来对给定的数据进行分
- 朴素贝叶斯原理
小森( ﹡ˆoˆ﹡ )
机器学习算法算法人工智能机器学习
朴素贝叶斯的介绍朴素贝叶斯算法(NaiveBayes,NB)是应用最为广泛的分类算法之一。它是基于贝叶斯定义和特征条件独立假设的分类器方法。由于朴素贝叶斯法基于贝叶斯公式计算得到,有着坚实的数学基础,以及稳定的分类效率。NB模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。条件概率:表示事件A在另外一个事件B已经发生条件下的发生概率,P(A|B)在女神喜欢的条件下,职业是程序员的概率?女
- 机器学习_15_贝叶斯算法
少云清
机器学习机器学习算法概率论贝叶斯算法
文章目录1贝叶斯定理相关公式2朴素贝叶斯算法2.1朴素贝叶斯算法推导2.2朴素贝叶斯算法流程3高斯朴素贝叶斯4伯努利朴素贝叶斯5多项式朴素贝叶斯6贝叶斯网络6.1最简单的一个贝叶斯网络6.2全连接贝叶斯网络6.3“正常”贝叶斯网络6.4实际贝叶斯网络:判断是否下雨6.5贝叶斯网络判定条件独立-016.6贝叶斯网络判定条件独立-026.7贝叶斯网络判定条件独立-031贝叶斯定理相关公式**先验概率P
- 2019-07-15 周学习计划
昭南小星
1.K近邻算法;决策树算法;朴素贝叶斯算法;2.10小节屈婉玲算法课;3.Go语言编程(许式伟)Channel看完;4.流畅的Python元类章节看完;5.减1KG;完成:1.alittle(5)2.0小节(0)3.None(0)4.None(0)5.103.6-103.9=-0.3(0)完成度5/100=5%
- 【机器学习】贝叶斯垃圾邮件识别
住在天上的云
机器学习机器学习人工智能
实验三:贝叶斯垃圾邮件识别本次作业以垃圾邮件分类任务为基础,要求提取文本特征并使用朴素贝叶斯算法进行垃圾邮件识别(调用已有工具包或自行实现)。1任务介绍电子邮件是互联网的一项重要服务,在大家的学习、工作和生活中会广泛使用。但是大家的邮箱常常被各种各样的垃圾邮件填充了。有统计显示,每天互联网上产生的垃圾邮件有几百亿近千亿的量级。因此,对电子邮件服务提供商来说,垃圾邮件过滤是一项重要功能。而朴素贝叶斯
- 朴素贝叶斯算法
汪汪军师
贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。贝叶斯公式:换种写法:例题:患有贝叶死的情况下,测出为阳性的概率为P(A|B1)=99.9%,没有患贝叶死,但测出为阳性的概率为P(A|B2)=0.1%。对万分之一的解读:。患有贝叶死的概率为P(B1)=0.01%,没有患贝叶死的概率P(B2)=99.
- 史诗级长文--朴素贝叶斯
SQingL
概率论
引言朴素贝叶斯算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。该算法的优点在于简单易懂、学习效率高、在某些领域的分类问题中能够与决策树、神经网络相媲美。但由于该算法以自变量之间的独立(条件特征独立)性和连续变量的正态性假设为前提,就会导致算法精度在某种程度上受影响。本文将从其原理讲起,通过实例进行辅助。最后使用python实现。基本理论朴素贝叶斯是
- ML12-朴素贝叶斯分类
杨强AT南京
朴素贝叶斯分类是一种经典的机器学习算法,本主题从贝叶斯的应用场景,到其数学基础,并到最终的实现与应用做了介绍。主要内容包含: 1.NaiveBayes的分类思想; 2.NaiveBayes分类的数学基础; 3.NaiveBayes分类算法实现; 4.NaiveBayes算法的sklearn调用; 5.文本特征处理; 6.NaiveBayes算法的简历薪资预测实现;朴素贝叶斯算法说明朴素
- 数据结构与算法之美学习笔记:46 | 概率统计:如何利用朴素贝叶斯算法过滤垃圾短信?
浊酒南街
数据结构与算法之美学习笔记算法数据结构
目录前言算法解析总结引申前言本节课程思维导图:上一节我们讲到,如何用位图、布隆过滤器,来过滤重复的数据。今天,我们再讲一个跟过滤相关的问题,如何过滤垃圾短信?垃圾短信和骚扰电话,我想每个人都收到过吧?买房、贷款、投资理财、开发票,各种垃圾短信和骚扰电话,不胜其扰。如果你是一名手机应用开发工程师,让你实现一个简单的垃圾短信过滤功能以及骚扰电话拦截功能,该用什么样的数据结构和算法实现呢?算法解析实际上
- 机器学习-0基础
猿戴科
机器学习python人工智能
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录0基础机器学习一、什么是机器学习二、学习软件python三、如何学1.载入数据与理解数据1.1导入数据1.2数据查看2.数据准备与特征过程1.2数据预处理-缺省值-异常值异常值:3特征工程模型与优化sklearn中模型的常用方法sklearn中的模型线性回归逻辑回归朴素贝叶斯算法NB决策树DT结果部署模型持久化模型的序列化模型
- 五分钟学完朴素贝叶斯算法
你若盛开,清风自来!
机器学习算法机器学习人工智能
下面再描述一个详细的案例个人感觉如下链接讲的比较详细图解机器学习|朴素贝叶斯算法详解-知乎
- 机器学习原理到Python代码实现之NaiveBayes【朴素贝叶斯】
神仙盼盼
基于python的算法设计机器学习机器学习python人工智能
NaiveBayes朴素贝叶斯算法该文章作为机器学习的第二篇文章,主要介绍的是朴素贝叶斯算法的原理和应用。学习本章内容建议对概率论中的联合概率以及先验概率、后验概率有初步的学习和掌握。难度系数:⭐⭐⭐更多相关工作请参考:Github算法介绍朴素贝叶斯算法是一种基于概率论的分类算法,它假设特征之间是独立的,即特征之间没有关联关系。朴素贝叶斯算法通过计算每个类别的概率来对新的样本进行分类。算法原理解析
- 朴素贝叶斯算法-分类算法
Quinto0
机器学习分类算法朴素贝叶斯算法机器学习拉普拉斯平滑
朴素贝叶斯算法-分类算法1概率基础概率定义为一件事情发生的可能性联合概率:包含多个条件,且所有条件同时成立的概率,记作P(A,B)条件概率:事件A在另一个事件B已经发生条件下的发送概率,记作P(A|B)在A1,A2相互独立的情况下,条件概率的特性:P(A1,A2|B)=P(A1|B)P(A2|B)2贝叶斯公式W:特征向量C:类别贝叶斯公式最常用于文本分类,上式左边可以理解为给定一个文本词向量W,那
- 【机器学习(一)】机器学习中使用朴素贝叶斯(即最小错误率贝叶斯)、最小风险贝叶斯实现分类
Ai研究僧
机器学习朴素贝叶斯算法机器学习python算法分类算法
目录1.朴素贝叶斯分类(最小错误率贝叶斯)1.1理论:1.2朴素贝叶斯算法流程:1.3举例说明1.3.1计算步骤:1.3.2程序代码:2.贝叶斯估计2.1算法流程:2.2举例说明3最小风险贝叶斯3.1算法流程:3.2案例说明1.朴素贝叶斯分类(最小错误率贝叶斯)首先得清楚:朴素贝叶斯就是最小错误率贝叶斯,同时也是最大后验概率贝叶斯。朴素贝叶斯是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的
- 大数据毕业设计:新闻情感分析系统 舆情分析 NLP 机器学习 爬虫 朴素贝叶斯算法(附源码+论文)✅
vx_biyesheji0001
biyesheji0002毕业设计biyesheji0001大数据课程设计自然语言处理python机器学习毕业设计爬虫
毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏)毕业设计:2023-2024年最新最全计算机专业毕设选题推荐汇总感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业。1、项目介绍技术栈:Python语言、django框架、vue框架、scrapy爬虫框架、jieba分词、nlp算法、爬虫抓取机器学习、朴素
- 【Python原创毕设|课设】基于(Flask、机器学习、含报告)朴素贝叶斯的垃圾邮件分类算法与检测系统-文末附下载方式以及往届优秀论文,原创项目其他均为抄袭
是云小糊糊
原创设计python机器学习课程设计毕业设计分类flask朴素贝叶斯
基于(Flask、机器学习)朴素贝叶斯的垃圾邮件分类算法与检测系统(获取方式访问文末官网)一、项目简介二、开发环境三、项目技术四、功能结构五、运行截图六、功能实现七、源码获取一、项目简介随着信息时代的快速发展,电子邮件作为人们日常沟通的重要方式也变得日益普及。然而,随之而来的垃圾邮件问题不可避免地困扰着用户,对邮件通信质量造成负面影响。为了解决这一问题,我们开发了基于朴素贝叶斯算法和TF-IDF特
- 机器学习中的监督学习基本算法-线性回归简单介绍
Algorithm_Engineer_
机器学习算法机器学习学习
机器学习中的监督学习算法有很多,如下所示:监督学习算法:线性回归、逻辑回归、K-近邻算法(KNN)、BP神经网络、朴素贝叶斯算法、随机森林、决策树、支持向量机。本小节主要重点讲解线性回归线性回归线性回归是一种用于建立和预测变量之间线性关系的统计模型。它假设自变量(特征)和因变量之间存在线性关系,并尝试通过拟合一条直线(或高维平面)来描述这种关系。线性回归模型可以用于回归问题,其中目标是预测一个连续
- 机器学习的算法简单介绍-朴素贝叶斯算法
Algorithm_Engineer_
机器学习机器学习算法人工智能
朴素贝叶斯网络(NaiveBayesNetwork)与贝叶斯网络(BayesianNetwork)有一些不同之处,让我们来澄清一下这两个概念。贝叶斯网络(BayesianNetwork):贝叶斯网络是一种用于建模概率关系的图模型。它使用有向无环图(DAG)来表示一组变量之间的依赖关系,并通过概率分布来量化这些依赖关系。节点表示变量,边表示变量之间的依赖关系。每个节点都与其父节点相关,而给定父节点的
- 朴素贝叶斯算法来识别垃圾文本
阿君聊风控
机器学习算法python算法算法
在电商平台中有大量的垃圾或者欺诈消息msg,如何识别召回这些垃圾消息是风控经常遇到的问题,今天我们来尝试用传统的朴素贝叶斯分类算法来挖掘分类模型来识别垃圾消息下面的样本中,标签1是垃圾消息,标签0是正常消息训练样本:im_msg_train.csv1我要买加我213④7728341我要买加我213④7728341宝子你这个我要了加我QQ31499703991宝子这个我要了加我QQ274390047
- 机器学习——朴素贝叶斯
风月雅颂
机器学习-基于sklearn机器学习人工智能算法pythonscikit-learn
【说明】文章内容来自《机器学习——基于sklearn》,用于学习记录。若有争议联系删除。1、简介朴素贝叶斯算法是一种基于贝叶斯理论的有监督学习算法。朴素是指样本特征之间是相互独立的,朴素贝叶斯算法有着坚实的数学基础和稳定的分类效率。朴素贝叶斯算法或朴素贝叶斯分类器(NaiveBayesClassifier,NBC)发源于古典数学理论,是基于贝叶斯理论与特征条件独立假设的分类方法,通过单独考量每一特
- 朴素贝叶斯
南太湖小蚂蚁
概率论是许多机器学习算法的基础。贝叶斯算法是一类算法,这是一类以条件概率的计算为核心进行分类的算法,而朴素贝叶斯算法是其中最简单的概率分类器。之所以称之为朴素,是因为整个形式化过程只做最原始、最简单的假设,并且假设数据中的特征间都是不相关的。我们现在有一个数据集,它由两类数据组成,数据分布如下图所示:两个参数的概率分布我们现在用p1(x,y)表示数据点(x,y)属于类别1(图中用圆点表示的类别)的
- 机器学习(8)朴素贝叶斯算法(20条新闻分类)
_(*^▽^*)_
#机器学习算法机器学习人工智能scikit-learnsklearn
目录一、基础理论二、实战:20条新闻分类1、读取数据2、训练集划分3、特征工程(文本特征提取)4、朴素贝叶斯算法训练5、模型评估方法一:预测值与真实值比对方法二:计算准确率总代码一、基础理论朴素贝叶斯算法:(朴素:假设数据集属性之间是相互独立的)因此算法的逻辑性十分简单,并且算法较为稳定,当数据呈现不同的特点时,朴素贝叶斯的分类性能不会有太大的差异。朴素:假设特征与特征之间相互独立。贝叶斯:贝叶斯
- python文本分类算法_基于Naive Bayes算法的文本分类
weixin_39832643
python文本分类算法
理论什么是朴素贝叶斯算法?朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关。举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果可以被判定为是苹果。尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是否为苹果的概率分布上独立的。朴素贝叶斯分类器很容易建立,特别适合用于大型数据集,众所周知,
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb