- Python语言的安全开发
慕璃嫣
包罗万象golang开发语言后端
Python语言的安全开发引言在信息技术迅速发展的今天,网络安全问题愈发凸显。随着Python语言的广泛应用,尤其是在数据分析、人工智能、Web开发等领域,其安全问题越来越受到重视。Python作为一门高效且易于学习的编程语言,虽然在开发过程中为我们提供了很多便利,但如果忽视了安全性,将可能导致严重的安全漏洞和数据泄露等问题。因此,本文将围绕Python语言的安全开发展开讨论,重点分析常见的安全问
- 工业相机常用词语解释
机器视觉小小测试员
ui自动化运维工业相机
线阵相机和面阵相机:线阵相机,是采用线阵图像传感器的相机。线阵图像传感器以CCD为主,一行的数据可以到几K甚至几十K,但是高度只有几个像素,行频很高,可以到每秒几万行,适合做非常高精度、宽画幅的扫描。面阵相机,是采用面阵图像传感器的相机,CMOS和CCD都有面阵相机,面阵相机的分辨率一行的宽度相比线阵相机会小很多,但是画面是整画幅的感应,一次成像的像素高度会比线阵相机大很多。同时程序开发上也相对简
- 知识图谱与大语言模型:构建智能问答系统
AGI大模型与大数据研究院
大数据AI人工智能计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
1.背景介绍在当今的信息时代,数据的获取和处理已经成为了我们生活中不可或缺的一部分。然而,随着数据量的爆炸性增长,如何从海量的数据中提取有用的信息,进而为用户提供精准的服务,已经成为了一个重要的研究课题。在这个背景下,知识图谱和大语言模型应运而生,它们通过对数据的深度挖掘和智能处理,为构建智能问答系统提供了可能。2.核心概念与联系2.1知识图谱知识图谱是一种新型的数据结构,它以图的形式表示实体之间
- 全面解析文件包含漏洞:原理、危害与防护
垚垚 Securify 前沿站
十大漏洞网络安全web安全系统安全网络安全
目录前言漏洞介绍漏洞原理产生条件攻击方式造成的影响经典漏洞介绍防御措施结语前言在当今复杂的网络安全环境中,文件包含漏洞就像潜藏在暗处的危险陷阱,随时可能对防护薄弱的Web应用发起致命攻击。随着互联网的迅猛发展,各类Web应用如雨后春笋般涌现,文件包含漏洞也随之成为Web应用安全的一大隐患。深入了解文件包含漏洞的原理、危害及防范措施,对于保障网络安全、维护数据隐私以及确保系统稳定运行至关重要。漏洞介
- Deepseek技术浅析(一)
爱研究的小牛
AIGC—概述大模型AIGC人工智能深度学习自然语言处理
DeepSeek是北京深度求索人工智能基础技术研究有限公司推出的人工智能技术品牌,专注于大语言模型(LLM)的研发与应用。其技术涵盖了从模型架构、训练方法到应用部署的多个层面,展现出强大的创新能力和应用潜力。以下将详细介绍DeepSeek的核心技术、工作原理以及具体实现方式。一、核心技术1.大语言模型(LLM)DeepSeek的核心产品是自研的大语言模型,其主要特点包括:(1)基于Transfor
- Synthesia技术浅析(四):自然语言处理
爱研究的小牛
AIGC—视频AIGC—虚拟现实AIGC—自然语言处理自然语言处理人工智能AIGC
Synthesia的自然语言处理(NLP)模块是其核心技术之一,涵盖了文本转语音(TTS)、情感分析以及多语言支持等多个方面。一、文本转语音(TTS)1.关键组件Synthesia的TTS系统主要依赖于Tacotron2和WaveGlow模型。这些模型共同作用,将文本转换为高质量的语音。2.过程模型详解2.1文本预处理文本预处理是TTS的第一步,包括分词、标点符号处理、数字和日期格式转换等。分词(
- 启元世界(Inspir.ai)技术浅析(一)
爱研究的小牛
AIGC—游戏制作人工智能机器学习AIGC深度学习
启元世界(Inspir.ai)作为全球领先的通用人工智能平台公司,自2017年成立以来,一直致力于通过人工智能技术提升产业效能和生活体验。公司汇聚了来自全球顶尖公司和高等学府的技术专家,专注于深度强化学习、推荐算法以及机器学习系统平台等前沿领域,并成功将人工智能技术应用于数字娱乐、智能决策和机器人等多个领域。一、核心技术启元世界在人工智能领域取得了多项突破性进展,其核心技术涵盖了以下几个方面:1.
- Lumen5——AI视频制作,提取关键信息生成带有视觉效果的视频
爱研究的小牛
AIGC—视频人工智能AIGC深度学习
一、Lumen5介绍Lumen5是一款基于人工智能的自动化视频制作平台,专为非专业用户设计,帮助其将博客、文章、新闻等文字内容快速转换为视频。Lumen5的目标是简化视频制作流程,让内容创作者、市场营销人员、社交媒体团队等无需视频制作经验即可轻松制作吸引观众的高质量视频。二、Lumen5的主要功能文字转视频Lumen5最具特色的功能是通过AI自动将文本转化为视频。用户可以输入一段文字或直接粘贴文章
- 【llm对话系统】大模型源码分析之llama模型的long context更长上下文支持
kakaZhui
llama深度学习pytorchAIGCchatgpt
1.引言Llama模型的一个重要特性是支持长上下文处理。本文将深入分析Llama源码中实现长上下文的关键技术点,包括位置编码(positionembedding)的外推方法、注意力机制的优化等。我们将通过详细的代码解析来理解其实现原理。2.位置编码的外推实现2.1旋转位置编码(RoPE)基础Llama采用旋转位置编码(RoPE,RotaryPositionEmbedding)来编码token的位置
- python神经网络框架有哪些,python调用神经网络模型
小明技术分享
python神经网络深度学习
人工智能Python深度学习库有哪些由于Python的易用性和可扩展性,众多深度学习框架提供了Python接口,其中较为流行的深度学习库如下:第一:CaffeCaffe是一个以表达式、速度和模块化为核心的深度学习框架,具备清晰、可读性高和快速的特性,在视频、图像处理方面应用较多。Caffe中的网络结构与优化都以配置文件形式定义,容易上手,无须通过代码构建网络;网络训练速度快,能够训练大型数据集与S
- 基础渗透测试实验—永恒之蓝漏洞复现
锅盖'awa'
网络安全小白之路linuxwindows系统安全安全性测试
文章目录概述一、漏洞简述二、组件概述三、漏洞影响四、漏洞复现4.1环境搭建4.2复现过程:1.查看上线主机2.使用Metasploit(MSF)工具3.选择一个编码技术,用来绕过杀毒软件的查杀4.远程控制目标机缓解措施概述永恒之蓝是指2017年4月14日晚,黑客团体ShadowBrokers(影子经纪人)公布一大批网络攻击工具,其中包含“永恒之蓝”工具,“永恒之蓝”利用Windows系统的SMB漏
- 计算机键盘上的每一个按键应用,电脑键盘按键都代表着什么意思?
佯良
计算机键盘上的每一个按键应用
电脑(Computer)是一种利用电子学原理根据一系列指令来对数据进行处理的设备。计算机由运算逻辑单元、控制器、输入和输出设备、记忆单元五大单元组成,以二进制为计算机基本单位。电脑键盘按键都代表着什么意思?(一)F1~F12通常称为功能键,其中F指的是Function功能的意思,说明F1~F12是12个功能键。每一个电脑键盘标配都是顶端都有F1~F12一排按键。我估计全部掌握的人还真不算多,今天高
- 人工智能的前景与未来就业市场:机遇、挑战与社会影响
苹果酱0567
面试题汇总与解析java开发语言中间件springboot后端
随着科技的飞速发展,人工智能(AI)已经逐渐渗透到我们生活的方方面面,它不仅引领着技术革新的浪潮,更在无声中重塑着我们的就业市场和社会结构。站在这个时代的交汇点上,我们不禁要问:人工智能将如何影响我们的未来就业市场?它带来的究竟是机遇还是挑战?回望过去,每一次科技革命都伴随着就业市场的剧烈震荡。而今,人工智能作为第四次工业革命的核心驱动力,正以前所未有的速度改变着劳动力市场的格局。从自动化生产线上
- MongoDB 大俗大雅,上来问分片真三俗 -- 4 分什么分
Austindatabases
mongodb数据库
开头还是介绍一下群,如果感兴趣PolarDB,MongoDB,MySQL,PostgreSQL,Redis,OceanBase,SqlServer等有问题,有需求都可以加群群内有各大数据库行业大咖,可以解决你的问题。加群请联系liuaustin3,(共2710人左右1+2+3+4+5+6+7+8+9)(123456群均已爆满,7群400+,开8群9群)这是MongoDB宣传周的第五篇,这周真漫长,
- Python实现复原毫米波雷达呼吸波形的示例
go5463158465
python算法机器学习python开发语言
以下是一个使用Python实现复原毫米波雷达呼吸波形的示例,该示例将涉及模型算法在重建损失和KL(Kullback-Leibler)损失之间的平衡问题。我们将使用深度学习中的变分自编码器(VAE)作为模型来进行呼吸波形的复原,因为VAE可以很好地处理重建和潜在空间分布的问题。步骤概述数据准备:生成或加载毫米波雷达的呼吸波形数据。定义VAE模型:包括编码器和解码器。定义损失函数:结合重建损失和KL损
- Recover.vim:优雅地解决Vim交换文件冲突问题
尚舰舸Elsie
Recover.vim:优雅地解决Vim交换文件冲突问题去发现同类优质开源项目:https://gitcode.com/项目介绍在使用Vim进行文件编辑时,有时你会遇到交换文件(swapfile)的困扰。这是因为当你关闭电脑或意外断电后,Vim会留下一个临时的交换文件以备恢复未保存的工作。Recover.vim是一个Vim插件,它旨在帮助你在恢复文件时轻松查看并合并与磁盘上现有版本的差异。项目技术
- 1月15日直播预告丨AI赋能指标管理分析 开启企业数智领航时代
袋鼠云数栈
大数据
为了帮助企业更有效地推进数字化转型升级,袋鼠云精心策划了一系列以“数字基建+数智应用”为核心的赋能分享活动,本系列直播共有四期,每期聚焦于不同的关键议题,深入探讨企业数字化转型中面临的挑战以及可行的应对策略。我们期待通过这些直播活动,与业界同仁深化交流,共同探讨数字化转型中的难点与痛点,并寻找切实可行的破局之道。我们坚信,凭借我们共同的努力与智慧,将为企业带来更多创新机遇和发展动力,推动行业的进步
- 高级测试简历借鉴--深圳0803
V紫玲珑
简历制作测试工程师
大咖简历借鉴程高级工程师♂-高级-13-20k-7年一、基本信息(关键字)1、目前正在找工作+联系方式+邮箱介绍(性别|28岁(1991年X月X日)|现居住深圳|7年工作经验)2、最近工作(2年)+最高学历/学位最近工作(2年)职位:高级软件工程师公司:腾讯科技深圳有限公司行业:计算机软件最高学历/学位专业:信息与计算科学学校:武汉信息科技学院学历/学位:本科(统招3、目前年收入:15万元(包含基
- 对话系统(Chatbots) 原理与代码实例讲解
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1对话系统的发展历程对话系统,又称聊天机器人(Chatbots),是模拟人类对话的计算机程序。从早期的基于规则的系统到如今基于深度学习的智能体,对话系统经历了漫长的发展历程。第一阶段:基于规则的系统(1960s-1990s)早期的对话系统主要基于预先定义的规则和模板。例如,ELIZA(1966)是一个模拟心理治疗师的程序,通过模式匹配和关键词识别来生成回复。这些系统只能处理有限的对
- GraphRAG、Naive RAG框架总结主流框架推荐(共23个):LightRAG、nano-GraphRAG、Fast-GraphRAG、Dify、RAGflow等
汀、人工智能
LLM工业级落地实践LLM技术汇总人工智能RAG检索系统搜索推荐检索增强生成GraphRAGDify
设想你正致力于构建一个智能问答系统,该系统旨在从庞大的知识库中迅速而精确地提取关键信息,并据此生成自然流畅的回答。然而,随着数据规模的不断扩大,系统面临着严峻的挑战:检索效率逐渐下滑,生成内容的质量亦趋于下降。这正是当前众多检索增强型生成(RAG)系统亟需解决的核心问题——如何在数据冗余、检索效率低下以及生成内容不相关之间找到一个最佳的平衡点。RAG的发展瓶颈:传统RAG系统通过检索模型提取最相关
- LLM系列(0):行业大模型落地服务在全业务场景的应用与探索【大模型智能问答、NL2SQL、文档智能分析智能生成、AI智能体决策等】
汀、人工智能
LLM工业级落地实践人工智能自然语言处理promptNL2DSLNL2SQL大模型智能问答
行业大模型落地服务:在全业务场景的应用与探索1.行业大模型落地挑战及应对1.1.挑战一:有限的算力资源在政企客户场景中落地行业大模型方案,可能首先面临的一个挑战是客户的算力资源有限。算力资源作为大模型落地的前提条件,是很多客户关注的重点,也是业务团队前期与客户沟通交流的一个重点。行业大模型场景落地是否一定需要大量的GPU算力,以及需要多少的算力才能满足落地需求?GPU算力主要消耗在两个地方,一是大
- 【llm对话系统】大模型 RAG 之回答生成:融合检索信息,生成精准答案
kakaZhui
人工智能AIGCchatgptllama
今天,我们将深入RAG流程的最后一步,也是至关重要的一步:回答生成(AnswerGeneration)。在这一步,LLM将融合用户问题和检索到的文档片段,生成最终的答案。这个过程不仅仅是简单的文本拼接,更需要LLM对检索结果进行理解、推理和整合,才能输出准确、流畅且符合用户需求的答案。一、回答生成的目标RAG中回答生成的目标主要包括:准确性(Accuracy):生成的答案需要准确回答用户的问题,并
- 探索SakuraLLM:轻小说与Galgame翻译的新纪元
蒋素萍Marilyn
探索SakuraLLM:轻小说与Galgame翻译的新纪元SakuraLLM适配轻小说/Galgame的日中翻译大模型项目地址:https://gitcode.com/gh_mirrors/sa/SakuraLLM在人工智能的浪潮中,SakuraLLM以其独特的魅力和强大的功能,成为了日中翻译领域的一颗璀璨明星。本文将深入介绍SakuraLLM项目,分析其技术特点,探讨其应用场景,并揭示其与众不同
- Kafka原理总结
DEMOAHUI
mq中间件kafka
Kafka是一个开源的分布式流式处理平台,在这个平台上可以发布、订阅以及处理数据流,具有强大的吞吐能力,让Kafka成为了一个高性能的发布与订阅消息系统一:概念理解Broker部署Kafka进程的服务被称之为Broker,Broker会接收Producer的消息,持久化到本地,然后Comsumer通Pull的形式进行消息拉取,通常使用集群的形式进行部署Producer生产者,即发送消息的一方,往B
- 大模型问答机器人的智能化程度
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型、问答机器人、智能化程度、自然语言处理、深度学习、Transformer模型、知识图谱、推理能力、对话系统1.背景介绍近年来,人工智能技术取得了飞速发展,特别是深度学习的兴起,为自然语言处理(NLP)领域带来了革命性的变革。其中,大模型问答机器人作为一种新型的智能交互系统,凭借其强大的语言理解和生成能力,在客服、教育、娱乐等领域展现出广阔的应用前景。问答机器人是指能够理解用户自然语言问题并给
- ollama如何保持模型加载在内存(显存)中或立即卸载
点动生态云
pythonllama语言模型
一、ollama如何保持模型加载在内存中或立即卸载?默认情况下,模型在生成响应后会在内存中保留5分钟。这允许在您多次请求LLM时获得更快的响应时间。然而,您可能希望在5分钟内释放内存,或者希望模型无限期地保留在内存中。使用keep_alive参数与/api/generate或/api/chatAPI端点,可以控制模型在内存中保留的时间。keep_alive参数可以设置为:一个持续时间字符串(例如“
- AI学习指南Ollama篇-Ollama的多模态应用探索
俞兆鹏
AI学习指南ai
AI学习指南应用篇-Ollama的多模态应用探索一、引言(一)背景介绍随着大语言模型(LLM)的发展,多模态应用(结合文本、图像、语音等)成为新的趋势。多模态模型能够处理多种类型的数据,如文本、图像和语音,从而提供更丰富、更智能的交互体验。Ollama作为本地部署工具,支持多模态模型的运行,为开发者提供了强大的功能。(二)文章目标本文将探讨Ollama在多模态应用中的可能性,并通过实际案例展示如何
- 各大模型厂商API使用:百度、阿里、豆包、kimi、deepseek、Yi
loong_XL
深度学习大模型AI百度大模型
百度ERNIE(支持requests接口)ERNIESpeed、ERNIELite免费免费测试下来模型ernie_speed输出吞吐量计算20-30来个,“{length/cost}tokens/s”输出总长度/耗时https://qianfan.cloud.baidu.com/文档:https://cloud.baidu.com/doc/WENXINWORKSHOP/s/dltgsna1oapi
- 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.24 随机宇宙:生成现实世界数据的艺术
精通代码大仙
numpypythonnumpypython开发语言
1.24随机宇宙:生成现实世界数据的艺术目录随机宇宙:生成现实世界数据的艺术引言复杂联合分布的采样技巧随机游走的蒙特卡洛实现基于物理规律的生成模型随机数在加密中的应用总结参考文献引言复杂联合分布的采样技巧随机游走的蒙特卡洛实现基于物理规律的生成模型随机数在加密中的应用总结参考文献随机数生成分布采样物理模拟密码学应用多元正态分布随机过程布朗运动流体动力学安全随机数随机性检验1.24.1引言在数据科学
- SpringBoot中运行Yolov5程序
eqa11
springbootYOLO后端
文章目录SpringBoot中运行Yolov5程序一、引言二、环境搭建1、SpringBoot项目创建2、YOLOv5环境配置三、SpringBoot与YOLOv5集成1、创建Python服务2、SpringBoot调用Python服务四、使用示例1、创建控制器五、总结SpringBoot中运行Yolov5程序一、引言在人工智能领域,目标检测是一个热门且实用的技术。YOLOv5作为目标检测算法中的
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一