- 回归预测 | MATLAB实现LSTM-SVR(长短期记忆神经网络-支持向量机)多输入单输出
matlab科研社
神经网络回归matlab
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍长短期记忆神经网络(LSTM)作为一种循环神经网络(RNN)的变体,擅长处理序列数据并捕捉长期依赖关系,而支持向量机(SVR)则是一种强大的回归算法,能够有效地处理高维数据并防止过拟合。将两者结合的LSTM
- 【锂电池SOC估计】 Matlab基于BP神经网络的锂电池SOC估计
天天Matlab代码科研顾问
matlab神经网络开发语言
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍摘要:电池荷电状态(StateofCharge,SOC)的精确估计对于电动汽车、储能系统等应用至关重要。传统的SOC估计方法存在精度受限、算法复杂等问题。本文提出了一种基于反向传播(BackPropagation,BP)神经网络的锂电池SO
- 分类预测 | MATLAB实现BP神经网络多特征分类预测
matlab科研社
分类matlab神经网络
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍近年来,随着大数据时代的到来以及计算能力的显著提升,人工智能技术得到了飞速发展。在众多人工智能算法中,反向传播神经网络(BackPropagationNeuralNetwork,BP神经网络)凭借其强大的非
- 重排利器:行列式点过程(DPP)在推荐系统中的应用
Jay Kay
推荐算法数学建模推荐算法
在推荐系统的重排阶段,我们常面临结果同质化问题——精排结果相似物料扎堆,导致用户体验单调。行列式点过程(DeterminantalPointProcesses,DPP)通过数学建模相关性与多样性的平衡,成为解决该问题的经典方案。一、DPP的核心思想DPP将推荐列表视为一个点过程,其核心是计算子集出现的概率。给定候选集(Z)(精排输出的Top-N物料),DPP定义子集(Y\subseteqZ)出现的
- 机器学习中的数学:数学建模常用知识点-1
数字化与智能化
机器学习中的数学机器学习凸函数泰勒公式Jensen不等式
一、凸函数1、凸函数讲解设函数f(x)是定义在区间X上的函数,若对于区间上任意两点x1、x2和任意实数��∈(0,1),总有如下表达式成立:则称为f(x)是X上的凸函数;反之,如果下式成立:则称为f(x)在X上的凹函数。如图所示:Python实现凸函数:importnumpyasnpimportmatplotlib.pyplotasplt#定义凸函数defconvex_function(x):re
- 编译原理7~9
CHARLIIE
编译原理
7。编译原理--03语法制导翻译和中间代码生成复习(清华大学出版社第3版)-X_Jun-博客园继承属性:从上往下in综合属性:从下往上val语法分析树和相应的带标注语法分析树这条产生式`S'→id:=E'`以及相应的语义动作`{S'.nextlist:="";emit(id.place':='E'.place)}`是用于描述赋值语句的翻译过程。这里,`id`表示一个标识符(即变量名),而`E'`是
- 深入理解reeze/tipi项目中的词法分析与语法分析技术
焦习娜Samantha
深入理解reeze/tipi项目中的词法分析与语法分析技术tipiThinkingInPHPInternals,AnopenbookonPHPInternals项目地址:https://gitcode.com/gh_mirrors/ti/tipi引言在编程语言实现领域,词法分析和语法分析是构建编译器或解释器的关键环节。本文将基于reeze/tipi项目中的相关内容,深入浅出地讲解这些核心技术原理。
- 构建四则运算解析器:字符串处理与计算逻辑实战
大熊小清新
本文还有配套的精品资源,点击获取简介:四则运算解析器是将包含四则运算符号的字符串表达式转化为可执行计算的程序。它对编程初学者而言是理解编程逻辑和语法分析的基础。通过理解四则运算的优先级规则,实现输入处理、词法分析、语法分析和计算步骤,可以采用递归下降解析或堆栈解析等方法。本解析器的实现涉及字符串处理、数据结构的运用,有助于学习者掌握编程语言的底层工作方式,提升编程技能和问题解决能力。1.四则运算解
- 前端领域前端框架的优缺点大剖析
前端视界
前端大数据与AI人工智能前端艺匠馆前端前端框架ai
前端领域主流框架的优缺点大剖析关键词:React、Vue、Angular、Svelte、虚拟DOM、响应式编程、前端工程化摘要:本文深入解析React、Vue、Angular、Svelte四大主流前端框架的核心设计原理,通过架构图解、算法源码剖析、数学建模和实战对比,揭示各框架在性能优化、开发体验、工程实践等方面的本质差异。文章包含6个完整项目案例和20+性能基准测试数据,为技术选型提供科学决策依
- 数学建模-模糊性综合评价模型
viperrrrrrr
数学建模
前言hellohello~,这里是viperrrrrrr~,欢迎大家点赞关注收藏个人主页:viperrrrrrr的博客欢迎学习数学建模算法、大数据、前端等知识,让我们一起向目标进发!对于算法的都可以在上面数据结构的专栏进行学习哦~有问题可以写在评论区或者私信我哦~目录2.1指标体系构建2.2数据收集及预处理我将通过以下的问题求解来介绍模糊性综合评价:中医药是中国传统文化的重要组成部分,凝聚了中华民
- 清风数学建模个人笔记--模糊综合评价
fvdj0
数学建模笔记
目录一、量二、分类三、模糊函数的三种表示方法四、应用:模糊综合评价(评判)一、量①确定性:经典数学(几何、代数)②不确定性:随机性(概率论、随机过程)灰性(灰色系统)模糊性(模糊数学)二、分类:偏小型:年轻、小、冷中间型:中年、中、暖偏大型:年老、大、热三、模糊函数的三种表示方法(1)模糊统计法(设计调查问卷,不推荐,主观性最弱)(2)借助已有的尺度(需要已有的指标,并能收集到数据)论域模糊集隶属
- 第十六届蓝桥杯C/C++程序设计研究生组国赛 国二
岁忧
刷题那件三两事蓝桥杯蓝桥杯c语言c++算法
应该是最后一次参加蓝桥杯比赛了,很遗憾,还是没有拿到国一。大二第一次参加蓝桥杯,印象最深刻的是居然不知道1s是1000ms,花了很多时间在这题,后面节奏都乱了,抗压能力也不行,身体也不适。最后省二。大三第二次参加蓝桥杯,中间也打了其他比赛,数学建模、ccpc这些,抗压能力提升很大,哈哈哈哈,刷的题也很多啦,印象当中,做出来了很多道dp题,很有成就感,最后国二。大四保研,gap了一年。研一第三次参加
- 数据库之查询优化器
m0_51909458
数据库数据库考研
目录1、相关定义:2、当sql语句执行过程中的各个步骤:3、优化器的两种方式3.1基于规则的优化器(RBO)3.2基于代价的优化器(CBO)4、优化器的两个阶段4.1逻辑优化4.1.1关系表达式等价代换4.1.2查询树的启发式规则找出公共子表达式4.2物理优化4.2.1启发式规则4.2.2基于代价的算法4.2.3单表,两表,多表1、相关定义:数据库包括三个部分:语法分析器、优化器、执行引擎其中优化
- 基于高灵敏度熔断机制的新旧协议自动回滚体系(2025技术实现)
百态老人
数学建模
一、核心设计原理与数学建模1.高灵敏度熔断触发机制为满足0.1%错误率阈值检测与30ms级响应要求,构建基于滑动窗口的实时统计模型:\text{实时错误率}=\frac{\sum_{i=1}^{N}\mathbb{I}(Status_i=Error)}{\sum_{i=1}^{N}\mathbb{I}(Status_i\neqPending)}\times100\%\quad\text{其中}\N
- 循环神经网络RNN
Xyz_Overlord
rnn深度学习人工智能
一、循环神经网络概念以及应用场景1.概念处理序列的一种神经网络计算模型。2.序列数据数据是根据时间步生成的,前后数据有关联关系,数据可以是数字、文字序列等等。3.应用场景自然语言处理(NLP)、时间序列预测、语音识别、音乐生成......4.自然语言处理概述主要是通过计算机算法来理解自然语言。NLP涵盖了从文本到语音、从语音到文本的各个方面,它涉及多种技术,包括语法分析、语义理解、情感分析、机器翻
- 2024年数学建模比赛题目及解题代码
yz_518 Nemo
数学建模算法
目录一、引言1.1竞赛背景介绍1.1.1数学建模竞赛概述1.1.2生产过程决策问题在竞赛中的重要性1.2解题前准备1.2.2工具与资源准备1.2.3心态调整与策略规划二、问题理解与分析三、模型构建与求解3.1模型选择与设计3.1.1根据问题特性选择合适的数学模型类型3.1.2设计模型框架,定义变量、参数和方程3.2模型构建3.2.1构建目标函数,反映生产决策的优化目标3.2.2将所有约束条件转化为
- 机器学习、深度学习在数学建模的应用
「已注销」
数学建模机器学习深度学习
数学建模,作为借助数学语言描述现实、解析系统行为并进行预测的关键方法论,长久以来是科学探索与工程实践的智力引擎。与此同时,机器学习,特别是深度学习的崛起,以其从海量数据中萃取复杂模式与高级表征的卓越能力,正在深刻变革知识发现的图景。当前,一个显著的学术趋势是将深度学习的数据驱动洞察与数学建模的机理演绎框架进行深度融合。这种融合并非简单的技术叠加,而是旨在基本原理层面寻求互补,在应用实践中催生创新,
- Transformer-BIGRU多输入多输出 | Matlab实现-Transformer-BIGRU多输入多输出预测,运行环境为Matlab2023及以上
Matlab算法改进和仿真定制工程师
transformermatlab深度学习
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍年来,随着深度学习技术的飞速发展,基于Transformer和循环神经网络(RNN)的混合模型在时间序列预测领域展现出强大的优势。本文将深入探讨一种结合Transformer和双向门控循环单元(BiGRU)
- 从理论到实践:情感分析如何提升量化价值投资收益率?
量化价值投资入门到精通
ai
从理论到实践:情感分析如何提升量化价值投资收益率?关键词:情感分析、量化价值投资、自然语言处理、投资组合优化、收益率提升、金融文本分析、量化策略摘要:本文系统解析情感分析技术在量化价值投资中的理论基础与实践路径。首先构建情感分析与价值投资的理论关联模型,揭示金融文本情感数据对资产定价的影响机制。其次通过数学建模和算法实现,演示如何将情感得分嵌入经典量化模型(如CAPM、Black-Litterma
- (三十二)深度解析领域特定语言(DSL)第六章——语法分析:第二个案例——减法表达式计算
weixin_46217641
DSL领域特定语言开发语言java软件构建
在建立对递归下降语法分析方法的直观理解后,我们将通过减法表达式计算(即文法6-9)这一实例展开进一步探讨。相较于前文案例,该实例的复杂度有所提升,主要体现在对左递归问题的处理上。在自顶向下的语法分析框架下,必须对左递归进行消除处理,尽管转换后的文法可读性可能降低,但其是保证分析过程终止性的必要条件。为保持示例的简明性,本案例暂不涉及语义模型构建及错误处理机制,但会演示如何在语法分析过程中同步完成表
- 自己动手开发编译器(七)递归下降的语法分析器
xfxf996
分析递归编译器编译语法开发
原文地址为:自己动手开发编译器(七)递归下降的语法分析器上回我们说到语法分析使用的上下文无关语言,以及描述上下文无关文法的产生式、产生式推导和语法分析树等概念。今天我们就来讨论实际编写语法分析器的方法。今天介绍的这种方法叫做递归下降(recursivedescent)法,这是一种适合手写语法编译器的方法,且非常简单。递归下降法对语言所用的文法有一些限制,但递归下降是现阶段主流的语法分析方法,因为它
- (十二)深度解析领域特定语言(DSL)第二章——外部DSL架构概览
weixin_46217641
DSL领域特定语言开发语言java软件构建
在第1章中,我们已对DSL相关基础概念进行了简要介绍。尽管笔者已尽量简化表述,但仍涉及词法分析、语法分析等相对专业的内容。鉴于这些概念的重要性,本章将对其进行简明阐释。之所以不深入展开,主要基于两点考虑:其一,循序渐进的讲解方式更符合知识传递规律;其二,缺乏案例支撑的抽象概念易增加理解难度,而现阶段引入复杂细节尚不具备充分条件。因此,笔者计划在后续章节结合代码案例,对这些概念进行更深入的剖析。前文
- (三十一)深度解析领域特定语言(DSL)第六章——语法分析:递归下降语法分析器(Recursive-Descent Parser)
weixin_46217641
DSL领域特定语言开发语言软件构建java
一、基本原理自顶向下语法分析器主要包括如下两种类型:递归下降语法分析器。一种基于函数递归的分析技术,可以通过回溯来处理一些更复杂的语法,但效率会降低,且可能导致无限循环。LL(k)语法分析器。一种表格驱动的预测分析器,算法比较复杂,但比递归下降分析器强大,可以处理更大的语法类别。递归下降分析方法的核心优势在于其直观性和低学习成本,特别适合手动实现语法分析器的场景。尽管语法分析器生成器(如ANTLR
- 数学领域的数学建模团队协作
AI天才研究院
AI大模型企业级应用开发实战AIAgent应用开发数学建模ai
数学领域的数学建模团队协作关键词:数学建模、团队协作、模型构建、算法设计、问题解决摘要:本文聚焦于数学领域的数学建模团队协作,深入探讨了团队协作在数学建模中的重要性及关键要素。首先介绍了数学建模的背景知识,包括其目的、适用范围、预期读者和文档结构等。接着阐述了数学建模团队协作涉及的核心概念,如团队角色、沟通机制等,并给出相应的原理和架构示意图。详细讲解了核心算法原理及操作步骤,结合Python代码
- MATLAB 中常用的微分函数介绍
士兵突击许三多
matlab基础matlab
MATLAB中常用的微分函数介绍在MATLAB中,微分运算是数值计算和符号计算中常用的功能。无论是在进行数据分析、优化算法,还是数学建模时,微分都扮演着重要的角色。本文将介绍MATLAB中常用的微分函数,并通过简单的示例帮助大家理解如何在实际应用中使用这些函数。引言微分是数学中重要的运算之一,广泛应用于物理学、工程学、经济学等领域。在MATLAB中,微分函数可以帮助我们对数据进行分析,提取变化趋势
- 从单模态到多模态:空间智能新趋势
AI天才研究院
ai
从单模态到多模态:空间智能新趋势关键词:多模态学习、空间智能、跨模态融合、深度学习、计算机视觉、自然语言处理、知识表示摘要:本文深入探讨了从单模态到多模态的空间智能演进过程。我们将首先回顾单模态系统的局限性,然后详细分析多模态学习的核心原理和技术实现,包括跨模态表示学习、对齐和融合策略。文章将提供数学建模、算法实现和实际应用案例,展示多模态空间智能如何通过整合视觉、语言、听觉等多源信息实现更接近人
- 基于双层优化的微电网系统规划设计方法(Matlab代码实现)
wytm
matlab开发语言
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述微电网系统结构微电网系统双层规划设计结构双层优化模型上层容量优化模型下层调度优化模型一、双层优化方法的基本原理及在微电网规划中的作用二、微电网系统规划设计的关键要素三、双层优化在微电网中的具体应用场景与案例四、数学建模方法与约束条件处理(一)典型双层模
- Hive SQL执行流程深度解析:从CLI入口到执行计划生成
Edingbrugh.南空
hive大数据hivesqlhadoop
摘要本文系统剖析HiveSQL的执行内核,从HiveCLI的启动流程切入,详解CliDriver、ReExecDriver和Driver三大核心类的协作机制。通过解析词法语法分析、语义校验、逻辑计划生成及物理优化等关键阶段,揭示Hive将SQL转换为分布式任务的完整链路。适合大数据开发人员深入理解Hive执行原理,为定制化优化和问题诊断提供理论基础。一、HiveCLI执行入口:CliDriver的
- 2024年中科院一区极光优化算法+分解对比!VMD-PLO-Transformer-LSTM多变量时间序列光伏功率预测
Matlab算法改进和仿真定制工程师
算法transformerlstm
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍摘要:光伏功率预测对于提高电力系统稳定性和可再生能源的有效利用至关重要。本文针对多变量时间序列光伏功率预测问题,提出了一种基于变分模态分解(VMD)、极光优化算法(PLO)、Transformer和长短期记
- 【Story】编译器的基础概念与类型分类
LuckiBit
StoryC语言c++pythonjava编译器gccgnu
目录编译器详解1.编译器的工作流程1.1词法分析(LexicalAnalysis)词法分析的例子1.2语法分析(SyntaxAnalysis)语法分析的例子1.3语义分析(SemanticAnalysis)语义分析的例子1.4中间代码生成(IntermediateCodeGeneration)中间代码的例子1.5代码优化(CodeOptimization)代码优化的例子1.6目标代码生成(Code
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s