numpy翻转数组

numpy学习专题

十一、numpy翻转数组

翻转数组

 
 
   
   
   
   
transpose()
原型:numpy.transpose(a,axes =None) 作用:对换数组的维度 注意:修改会影响原始数组
参数 说明 a 要操作的数组 axes 整数列表,对应维度,通常所有维度都会对换
import numpy as np
arr = np.arange(24).reshape(4,3,2)
arr2 =np.transpose(arr)
print("arr:\n",arr,"\n")
print("arr.shape",arr.shape,"\n")
print("arr2\n",arr2,"\n")
print("arr2.shape",arr2.shape,"\n")
arr:
 [[[ 0  1]
  [ 2  3]
  [ 4  5]]

 [[ 6  7]
  [ 8  9]
  [10 11]]

 [[12 13]
  [14 15]
  [16 17]]

 [[18 19]
  [20 21]
  [22 23]]] 

arr.shape (4, 3, 2) 

arr2
 [[[ 0  6 12 18]
  [ 2  8 14 20]
  [ 4 10 16 22]]

 [[ 1  7 13 19]
  [ 3  9 15 21]
  [ 5 11 17 23]]] 

arr2.shape (2, 3, 4) 
import numpy as np
arr = np.arange(24).reshape(4,6)
arr2 =arr.T

print("arr:\n",arr,"\n")
print("arr.shape",arr.shape,"\n")
print("arr2\n",arr2,"\n")
print("arr2.shape",arr2.shape,"\n")
arr:
 [[ 0  1  2  3  4  5]
 [ 6  7  8  9 10 11]
 [12 13 14 15 16 17]
 [18 19 20 21 22 23]] 

arr.shape (4, 6) 

arr2
 [[ 0  6 12 18]
 [ 1  7 13 19]
 [ 2  8 14 20]
 [ 3  9 15 21]
 [ 4 10 16 22]
 [ 5 11 17 23]] 

arr2.shape (6, 4) 

rollaxis

原型:numpy.rollaxis(a,axis,start=0)
作用:向后滚动特定的轴到一个特定的位置
参数        说明
a          要操作的数组
axis        要向后滚动的轴,其他轴的相对位置不会改变
start       默认为零,表示完整的滚动,否则会滚动到特定的位置
import numpy as np
arr = np.arange(24).reshape(4,2,3)
print("arr:\n",arr,"\n")
print("\n",arr.shape,"\n")
arr2 = np.rollaxis(arr,2)
print("arr:\n",arr2,"\n")
print("\n",arr2.shape,"\n")
arr:
 [[[ 0  1  2]
  [ 3  4  5]]

 [[ 6  7  8]
  [ 9 10 11]]

 [[12 13 14]
  [15 16 17]]

 [[18 19 20]
  [21 22 23]]] 


 (4, 2, 3) 

arr:
 [[[ 0  3]
  [ 6  9]
  [12 15]
  [18 21]]

 [[ 1  4]
  [ 7 10]
  [13 16]
  [19 22]]

 [[ 2  5]
  [ 8 11]
  [14 17]
  [20 23]]] 


 (3, 4, 2) 

swapaxes()

原型:numpy.swapaxes(a,axis1,axis2)
作用:交换数组的两个轴
参数             说明
a               要操作的数组
axis1            对应第一个轴的整数
axis2            对应第二个轴的整数
import numpy as np
arr = np.arange(24).reshape(2,3,4)
print("arr:\n",arr,"\n")
print("\n",arr.shape,"\n")
arr2 = np.swapaxes(arr,2,0)
print("arr:\n",arr2,"\n")
print("\n",arr2.shape,"\n")
arr:
 [[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]

 [[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]] 


 (2, 3, 4) 

arr:
 [[[ 0 12]
  [ 4 16]
  [ 8 20]]

 [[ 1 13]
  [ 5 17]
  [ 9 21]]

 [[ 2 14]
  [ 6 18]
  [10 22]]

 [[ 3 15]
  [ 7 19]
  [11 23]]] 


 (4, 3, 2) 

一定要支持作者哦

你可能感兴趣的:(numpy,python)