- 深度学习 Deep Learning 第8章 深度学习优化
odoo中国
AI编程人工智能深度学习人工智能优化
深度学习第8章深度学习的优化章节概述本章深入探讨了深度学习中的优化技术,旨在解决模型训练过程中面临的各种挑战。优化是深度学习的核心环节,直接关系到模型的训练效率和最终性能。本章首先介绍了优化在深度学习中的特殊性,然后详细讨论了多种优化算法,包括随机梯度下降(SGD)、动量法、Nesterov动量法、AdaGrad、RMSProp和Adam等。此外,还探讨了参数初始化策略、自适应学习率方法以及二阶优
- 平衡二叉树(AVL树):数据结构特性与自平衡技术详解
One Key Variable
课程设计
摘要平衡二叉树,尤其是AVL树,在追求高效数据存储与检索的场景中占据重要地位。本文深入剖析AVL树的数据结构特性,详细解读其自平衡技术原理与实现,帮助读者理解AVL树如何在动态数据操作中维持高效性能。一、引言在数据处理过程中,二叉搜索树虽能实现快速查找,但在频繁插入和删除节点时,可能因结构失衡导致查找效率大幅下降。AVL树作为一种自平衡二叉搜索树,通过严格的平衡条件和自平衡技术,确保树在动态操作下
- WRF移动嵌套结合伏羲模型与CFD(PALM)高精度多尺度降尺度分析研究
Hardess-god
WRF算法人工智能
随着大气科学与数值模拟技术的发展,高精度多尺度气象模拟日益成为科研与应用的热点问题。本文将详细介绍如何使用WRF移动嵌套技术结合伏羲(Fuxi)模型,并通过CFD模型PALM实现精细化降尺度,以满足城市或区域局地精细化气象预报的需求。1.技术路线概述WRF移动嵌套(MovingNesting):动态调整高分辨率嵌套网格位置,追踪天气系统(如台风、强对流系统)以提高局地预报精度。伏羲(Fuxi)模型
- LLM的工具调用能力(如Function Calling)
maxmaxma
前端javascript开发语言
LLM的工具调用能力(如FunctionCalling)是增强大模型实用性的核心技术,使其能够通过生成结构化指令与外部系统交互。以下是关键要点及技术解析:一、工具调用的定义与原理核心机制LLM通过生成符合工具接口的指令(如JSON参数),触发外部工具执行。例如,用户提问天气时,模型生成{"location":"北京","date":"2025-03-22"},系统调用天气API获取数据。分工明确:
- 程序员学商务英语之Don‘t jinx it、l have a half mind to do sth、Don‘t change the subject、Quality over quantity..
李匠2024
英文
1463-Don'tjinxit.-别鸟鸦嘴A:Whatifitrainstheweekend?Youknow,theweather'sbeenchangeablethesedays!如果这个周末下雨怎么办?你知道,这些天的天气变化无常!B:Don'tiinxit.i'vespentalotoftimepreparingforthiscamping.lhopeitstaysfineforthewe
- 毕业论文代码实验(Python\MATLAB)基于K-means聚类的EMD-BiLSTM-Attention光伏功率预测模型
清风AI
毕业设计代码实现pythonlstm深度学习神经网络人工智能matlabpytorch
一、项目背景1.1光伏功率预测意义在能源结构转型背景下(国家能源局2025规划),光伏发电渗透率已超过18%。但受天气突变、云层遮挡等因素影响,光伏出力具有显著波动性,导致:电网调度难度增加(±15%功率波动)电力市场交易风险提升光储协同控制效率降低1.2技术挑战多尺度特征耦合:分钟级辐照度变化与小时级天气模式共存非线性映射关系:气象因素与发电功率呈高阶非线性关系数据模态差异:数值天气预报(NWP
- (BS ISO 11898-1:2015)CAN_FD 总线协议详解5- MAC子层描述4
s多情公子s
CAN_FD协议详解信息与通信网络协议
5.5帧编码帧中的比特流应按照不归零(NRZ,Non-Return-to-Zero)方法进行编码。这意味着在整个比特时间内生成的比特电平是恒定不变的。为了限制可用于同步的最大边沿(即信号波形的上升沿或下降沿)间距,帧的不同部分如起始边界(SOF,StartofFrame)、仲裁字段、控制字段、数据字段以及CRC序列应当采用比特填充的方法进行编码。每当发送器检测到连续五个相同值的比特(包括填充比特)
- 鸿蒙开发工程师简历项目撰写全攻略
谢道韫689
鸿蒙随笔harmonyos华为
一、项目结构的黄金法则建议采用「4+1」结构:项目背景(业务价值)+技术架构(鸿蒙特性)+核心实现(技术难点)+个人贡献(量化成果)+附加价值(延伸影响)二、鸿蒙特色技术点提炼技巧鸿蒙核心技术技术维度具体实现案例量化成果示例分布式软总线自定义协议实现家电设备低功耗连接连接成功率从89%提升至97%ArkUI框架基于TS扩展实现动态UI模板引擎开发效率提升40%,代码量减少60%原子化服务实现天气服
- 使用BLSTM自动评估句子级构音障碍的可理解性
帅小柏
声音的未来:语音识别文献解读深度学习人工智能分类
使用BLSTM自动评估句子级构音障碍的可理解性原文:AutomaticAssessmentofSentence-LevelDysarthriaIntelligibilityUsingBLSTM引言构音障碍简介构音障碍的定义与特征构音障碍是一种由神经原因引起的运动性言语障碍表现为肌肉无力、瘫痪或协调不良,导致言语清晰度下降可理解性的重要性可理解性是衡量言语障碍严重程度的重要指标自动评估可帮助语言病理
- 视频剪辑行业的现状与进阶之路:一个双视角分析
程序员
视频剪辑行业的现状与进阶之路:一个双视角分析一、现状解析商业角度分析成本控制培训需要投入时间和人力成本快节奏的市场环境要求快速产出人员流动性大,培训投入可能无法获得长期回报市场需求大量内容需要快速产出标准化的剪辑模板更容易管理追求效率大于创新风险规避现成模板降低出错风险统一风格便于品控减少个人风格带来的不确定性剪辑师角度分析职业发展受限难以系统学习完整工作流程创意空间被压缩技能提升遇到瓶颈技能断层
- (LeetCode 热题 100) 74. 搜索二维矩阵(二分查找)
岁忧
java版刷题LeetCode热题100LeetCodeleetcode矩阵算法c++java
题目:74.搜索二维矩阵方法一:数组按行拼接为一个不下降的一维数组。采用二分查找,时间复杂度0(lognm)。C++版本:classSolution{public:boolsearchMatrix(vector>&matrix,inttarget){intn=matrix.size(),m=matrix[0].size();intl=0,r=n*m-1;while(ltarget){r=mid-1
- 股票交易之多策略协调规划
leo_厉锵
金融栏金融
前言:在股票交易领域,市场走势受宏观经济、行业竞争、公司基本面及投资者情绪等诸多因素影响,复杂多变。单纯依靠单一技术指标,如均线、MACD等做出买卖决策,犹如盲人摸象,易陷入片面判断,导致投资失误。因此,协调运用多种策略构建完善交易体系十分必要。以下为具体策略内容:一、止损与止盈的协同设置(一)止损点设定原则固定比例止损:单笔亏损不超本金5%,适用于短线及波动适中品种。动态调整止损:加仓后成本下降
- 【人工智能机器学习基础篇】——深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理
猿享天开
人工智能数学基础专讲人工智能机器学习无监督学习降维
深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理在当今数据驱动的世界中,数据维度的增多带来了计算复杂性和存储挑战,同时也可能导致模型性能下降,这一现象被称为“维度诅咒”(CurseofDimensionality)。降维作为一种重要的特征提取和数据预处理技术,旨在通过减少数据的维度,保留其主要信息,从而简化数据处理过程,并提升模型的性能。本文将深入探讨两种广泛应用于无监督学习中的降
- “四预”驱动数字孪生水利:让智慧治水守护山河安澜
GeoSaaS
实景三维智慧城市人工智能gis大数据安全
近年来,从黄河秋汛到海河特大洪水,从珠江流域性洪灾到长江罕见骤旱,极端天气频发让水安全问题备受关注。如何实现“治水于未发”?数字孪生水利以“预报、预警、预演、预案”(四预)为核心,正在掀起一场水利治理的智慧革命。一、数字孪生水利:从物理世界到虚拟镜像的跃迁数字孪生水利并非简单的“数字建模”,而是通过高精度传感器、大数据、人工智能等技术,在虚拟空间构建与物理流域完全映射的“数字分身”,实现水情、工情
- react 技术栈请问该如何优化 DOM 大小
混血哲谈
react.js前端前端框架
针对React应用中DOM大小过大的问题,以下是详细的优化方案和具体操作步骤,帮助你提升Lighthouse性能评分和用户体验:一、问题根源分析DOM大小过大(如超过1500个节点或深度超过32层)会导致:渲染性能下降:浏览器解析和渲染DOM的时间增加。内存占用过高:大量DOM节点占用更多内存,影响低端设备表现。交互延迟:事件监听器绑定过多节点时,响应变慢。常见原因:未优化的列表渲染(如长列表一次
- 对于项目管理过程,如何减少项目返工?
在项目管理中,返工是吞噬资源、拖延进度、消磨士气的"隐形杀手"。据统计,软件开发项目中因需求变更导致的返工成本占总成本的30%-50%,而在建筑工程领域,返工率超过10%的项目普遍存在利润率下降风险。减少返工不仅是效率问题,更是项目管理的核心能力体现。本文将从返工根源剖析、全流程防控策略到工具方法落地,系统阐述如何构建"一次做对"的项目管理体系。一、返工的五大病根诊断需求模糊症(占比35%)用户需
- Starrocks使用中一些总结
WYRM_GOLD
Starrocks数据库数据仓库数据库开发
1、实时写入的注意事项数据表如果是每天写入,要创建分区(推荐按天分区)。表模型选择更新模型查询的维度列,整数类型列放在前面,有利于快速的查询表分区要设置过期时间,尽可能保留最近一年的数据。总结:1、分区是为了分区内数据查询时扫描的数据量减少,提高查询效率2、更新模型比组件模型更适合实时数据的写入,使用更新模型后IO和CPU使用都会有明显的下降。3、对应上述第三项中会提高查询效率,字符的扫描没有数值
- 项目经理的验收突围战:从风险预判到价值交付的破局之道
在软件项目交付失败的统计中,近40%的问题集中爆发在验收环节。当某智慧城市项目在验收阶段遭遇23个功能点争议时,项目经理发现合同中的验收标准竟写着"系统运行稳定"这样的模糊表述——这个真实案例折射出验收管理的复杂性。项目经理需要构建从需求源头到价值交付的全周期验收防御体系。一、验收危机的三大引爆点与拆解策略需求迷雾:概念共识的断层某医疗AI项目开发时,客户口中的"智能分诊"被工程师理解为规则引擎,
- AI大模型交付业务起势,亚信科技书写AI时代的转型样本
大数据在线
AI云静思园人工智能AI大模型亚信科技数智运营AI大模型交付
面对AI带来的产业巨变,任何企业都无法永远躺在过去的功勋簿上,积极拥抱变化和布局转型成为必然选择。这就像一场马拉松,征途艰难,唯一确定的是:那些敢于在断裂处重生的企业,终将在时代的潮汐中刻下自己的印记。近日,亚信科技公布2024年财报数据--营业收入66.46亿元人民币,同比下降15.8%;净利润却达到5.16亿元人民币,净利润率同比增长1.3个百分点至7.8%,研发投入占收入比13.6%,研发与
- 【硬核实战】ETCD+AI智能调度深度整合!从架构设计到调优避坑,手把手教你打造高可用调度系统!
码农突围计划
人工智能etcd大数据
一、核心架构设计:ETCD如何赋能AI调度?架构图:[AI调度引擎]←实时数据→[ETCD集群]↓决策指令[执行层(车辆/物流/交通设备)]核心角色:ETCD:存储调度策略、节点状态、任务队列、实时环境数据(如交通流量、天气)AI模型:基于ETCD数据动态决策(如路径规划、资源分配)调度执行层:接收ETCD下发的指令并执行(如车辆调度、信号灯控制)优势:强一致性:ETCD的Raft协议确保调度策略
- 从代码到蓝图:开发者转型技术型项目经理的破局之路
一、开发者面临的转型临界点技术型职业瓶颈的四个维度案例:某大厂P7工程师年薪突破80万后陷入停滞,发现35岁后晋升通道收窄至3%技术天花板困境当技术深度达到可解决90%业务需求时,剩余10%的突破需要投入指数级增长的时间成本业务理解断层某金融系统开发者耗时3月重构代码,上线后才发现业务方早已变更需求方向沟通能力边际递减技术团队日均处理跨部门沟通耗时2.3小时,其中62%的时间消耗在需求理解错位上职
- 友思特新品 | OCT-3D断层扫描成像测量系统OQ StrataScope升级2.0型号!
友思特 机器视觉与光电
机器视觉3dOCT光学相干断层扫描
ProductUpdate!友思特高精度OCT-3D断层扫描成像测量系统推出OQStrataScope升级2.0/R型号!同时,原有的OQStrataScope1.0型号产品将暂时停产。OCT新品简介OQStrataScope2.0是仅用于研究和工业领域应用的光学相干断层扫描系统,可针对高度散射的样品介质增加极深的成像深度。相较于OQLabScope系列,OQStrataScope中心波长可达13
- 【项目实战】Redis常见问题之缓存击穿、缓存穿透、缓存雪崩
本本本添哥
004-数据库003-中间件缓存redisspring
Redis作为一款流行的内存数据存储系统,经常被用作缓存来提高应用的性能。然而,在使用Redis作为缓存时,可能会遇到一些问题,如缓存击穿、缓存穿透和缓存雪崩。这些问题可能导致系统性能下降甚至服务不可用。下面是对这三种常见问题的简要解释及解决方案,每种方案都有其适用场景与限制条件,在实际应用中需要根据具体情况选择最合适的方法来优化系统性能并保障稳定性。此外,合理的架构设计以及对业务逻辑的理解也是有
- 获取网站流量的方法有哪些?
liuliangpuzi
互联网流量运营数据搜索引擎百度大数据
不同流量源的比例反映了网站所有者不同的管理策略和网站的发展阶段。那么,网站流量来源都有哪些?接下来小编就跟大家浅析下网站流量来源的三大途径,一起来看看吧!1、直接访问来源搜索引擎源和外部链源依赖于外部,因此通常存在较大的不确定性,如搜索引擎算法调整、业务模型调整、策略监管等,这可能会使网站的流量从每天数十万IP急剧下降到数千。对于小型商业站来说,从搜索引擎获取流量是一种更经济实惠、廉价的选择,但对
- MySQL中,性别列(男,女)为什么不适合建索引?
程序员猫哥
MySQLmysql数据库
文章目录在MySQL中,性别列(如仅包含"男"和"女"的列)不适合单独建立索引的主要原因如下:低区分度问题当某个列的唯一值比例(Cardinality)过低时(如性别列仅有2种值),索引的筛选效率会显著下降假设表中有100万条数据,使用性别索引查询时:SELECT*FROMusersWHEREgender='男'可能返回约50万条记录,此时:索引需要执行50万次回表查询(随机I/O)全表扫描只需一
- 有了大模型为何还需要Agent智能体
全栈你个大西瓜
人工智能人工智能AIAgentAgent智能体Agent原理
一、什么是Agent?Agent(智能体)是一种能感知环境、自主决策、执行动作的智能实体,当它与大语言模型(如通义千问QWen、GPT)结合时,形成一种**“增强型AI系统”**。其核心架构如下:大脑(LLM):负责语言理解、逻辑推理、知识问答等认知任务。感官(工具链):通过API、传感器或数据库获取实时数据(如天气、股价)。手脚(执行器):调用外部工具完成任务(如发送邮件、控制智能家居)。记忆(
- LoRA中黑塞矩阵、Fisher信息矩阵是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力矩阵机器学习人工智能transformer深度学习算法线性代数
LoRA中黑塞矩阵、Fisher信息矩阵是什么1.三者的核心概念黑塞矩阵(Hessian)二阶导数矩阵,用于优化问题中判断函数的凸性(如牛顿法),或计算参数更新方向(如拟牛顿法)。Fisher信息矩阵(FisherInformationMatrix,FIM)统计学中衡量参数估计的不确定性,反映数据中包含的关于参数的信息量。在机器学习中常用于自然梯度下降(NaturalGradientDescent
- pipost 如何提升团队协作效率 [特殊字符]
Kairo_01
postman
开发团队中的沟通障碍在许多开发团队中,前端工程师、后端工程师和QA测试人员之间的同步往往会浪费大量时间。不断的会议和对齐会话减慢了整个过程,严重影响了生产力。以下是一些常见的痛点:前端和后端团队需要不断对API接口进行同步。测试人员必须反复确认API行为。产品经理必须确保每个人都对项目需求达成一致。这些沟通障碍导致开发周期延长、团队士气下降和项目发布推迟。通过Apipost提高协作效率1.精简的A
- 文本纠错(Text Correction)
dundunmm
人工智能数据挖掘文本纠错人工智能数据挖掘文本纠错深度学习
文本纠错(TextCorrection)是自然语言处理(NLP)中的一个重要任务,旨在自动检测并修正文本中的错误,包括拼写、语法、语义等层面的错误。其核心目标是通过算法模型将错误文本转换为符合语言规范的表达。该任务在自动写作辅助、搜索引擎优化、智能客服、教育等多个领域具有广泛应用。输入:包含错误的原始文本(如“我明天要去北京,希望天汽好。”)输出:修正后的规范文本(如“我明天要去北京,希望天气好。
- PyCINRAD读取探测中心天气雷达拼图系统v3产品
pysoer
python
PyCINRADPyCINRAD号称国内最强大的雷达数据处理工具,支持多种CINRAD雷达数据格式,兼容性强,横扫CMA雷达基数据和产品,国内首个支持“探测中心拼图3.0”。快速提取、计算雷达衍生产品,如组合反射率CR、回波顶高ET、降水粒子分类HCL等。作为一个开源项目,PyCINRAD对所有用户免费开放,鼓励社区贡献和改进。据悉已遍布CMA的各个系统角落。PyCINRAD官网https://p
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>