基于DCGM和Prometheus的GPU监控方案

基于DCGM和Prometheus的GPU监控方案

背景: 在早期的GPU监控中我们会使用一些NVML工具来对GPU卡的基本信息进行采集,并持久化到监控系统的数据存储层。因为我们知道,其实通过nvidia-smi这样的命令也是可以获取到GPU的基本信息的,但随着整个AI市场的发展和成熟,对于GPU的监控也越来越需要一套标准化的工具体系,也就是本篇文章讲的关于DCGM相关的监控解决方案。

DCGM(Data Center GPU Manager)即数据中心GPU管理器,是一套用于在集群环境中管理和监视Tesla™GPU的工具。

它包括主动健康监控,全面诊断,系统警报以及包括电源和时钟管理在内的治理策略。

它可以由系统管理员独立使用,并且可以轻松地集成到NVIDIA合作伙伴的集群管理,资源调度和监视产品中。

DCGM简化了数据中心中的GPU管理,提高了资源可靠性和正常运行时间,自动化了管理任务,并有助于提高整体基础架构效率。

注意: 虽然可以通过nvidia-smi命令将相关的信息采集,并定期汇报到数据存储进行数据分析计算和展现,但是涉及到一整套的监控体系的整合,仍然需要使用方进行一些列的改造。因此这里,我们采用NVIDIA官方提供的DCGM方案来进行GPU数据采集,并通过声称下一代监控系统的Prometheus进行整个监控和告警的集成。

DCGM工具部署

$ git clone https://github.com/NVIDIA/gpu-monitoring-tools.git

# 构建dcgm-exporter工具,其实就是nvidia官方对于nvidia-docker2.x推出的用于gpu数据监控的工具
# 最终会将gpu卡的metrics基本信息存储以metrics的数据格式存储到文件中
$ cd dcgm-exporter
# nvidia/dcgm-exporter:latest
$ make

$ docker run -d --runtime=nvidia --rm --name=nvidia-dcgm-exporter nvidia/dcgm-exporter

# 查看dcgm-exporter收集到的gpu metrics数据
$ docker exec -it nvidia-dcgm-exporter tail -n 10  /run/prometheus/dcgm.prom
dcgm_ecc_dbe_aggregate_total{gpu="0",uuid="GPU-b91e30ac-fe77-e236-11ea-078bc2d1f226"} 0
# HELP dcgm_retired_pages_sbe Total number of retired pages due to single-bit errors.
# TYPE dcgm_retired_pages_sbe counter
dcgm_retired_pages_sbe{gpu="0",uuid="GPU-b91e30ac-fe77-e236-11ea-078bc2d1f226"} 0
# HELP dcgm_retired_pages_dbe Total number of retired pages due to double-bit errors.
# TYPE dcgm_retired_pages_dbe counter
dcgm_retired_pages_dbe{gpu="0",uuid="GPU-b91e30ac-fe77-e236-11ea-078bc2d1f226"} 0
# HELP dcgm_retired_pages_pending Total number of pages pending retirement.
# TYPE dcgm_retired_pages_pending counter
dcgm_retired_pages_pending{gpu="0",uuid="GPU-b91e30ac-fe77-e236-11ea-078bc2d1f226"} 0

dcgm-exporter采集指标项以及含义:

你可能感兴趣的:(运维,docker,kubernetes,gpu)