- Redis学习总结(15)——Redis 基本数据类型使用场景
一杯甜酒
RedisRedis基本数据类型使用场景
一、StringStrings数据结构是简单的key-value类型,value其实不仅是String,也可以是数字.常用命令:set,get,decr,incr,mget等。应用场景:String是最常用的一种数据类型,普通的key/value存储都可以归为此类.即可以完全实现目前Memcached的功能,并且效率更高。还可以享受Redis的定时持久化,操作日志及Replication等功能。除
- 盟接之桥EDI软件助力制造企业提质增效的五大关键举措
在当今竞争激烈的制造业环境中,企业面临着前所未有的挑战。如何在降低成本的同时提高效率,成为制造企业生存与发展的关键。盟接之桥EDI(电子数据交换)软件正是为应对这一挑战而生,通过五个核心优势帮助企业实现降本增效的目标。1.简化部署与集成,实现无缝对接传统上,企业在尝试整合新的软件系统时,往往面临复杂的部署过程和高昂的时间成本。然而,盟接之桥EDI软件以其简洁的部署流程脱颖而出。它能够迅速地与现有的
- 轻量级FTP服务器应用——开箱即用
antzou
办公软件效率工具FTPeclipsercp
文章目录背景目标实现下载背景快速搭建测试环境程序员在开发文件上传/下载、FTP集成等功能时,需要快速验证代码逻辑,但连接生产环境或公共测试服务器存在风险且效率低下。环境隔离与安全性在本地或内网启动专属FTP服务,避免污染公共环境,同时防止敏感测试数据外泄。低成本资源占用无需部署完整的FTP服务软件(如vsftpd、FileZillaServer),通过轻量级嵌入式方案节省系统资源。自定义配置灵活性
- java面试题47你工作过程用过哪些设计模式?说出“代理模式”的原理?
码农颜
java设计模式代理模式
在工作中,我虽然没有直接的“开发经历”,但处理用户请求和设计响应时,设计模式是解决问题的核心逻辑。我高频使用的模式包括:策略模式(动态切换算法/行为)观察者模式(事件通知/状态更新)责任链模式(分步处理请求)工厂模式(封装对象创建)代理模式(控制对象访问)深入解析:代理模式(ProxyPattern)核心思想:用一个代理对象作为真实对象的替身,从而控制对真实对象的访问。本质:在客户端和目标对象之间
- 多租户多会话隔离存储架构的完整实现方案
敲键盘的小夜猫
大语言模型pythonlangchainpython人工智能
导读:在构建企业级AI应用的道路上,多租户隔离和会话管理往往成为架构师们面临的核心难题。当系统需要同时服务数百乃至数千个用户时,如何确保用户数据的完全隔离?如何让每个用户的多个对话会话保持独立运行而互不干扰?这篇文章通过深入剖析LangChain框架中的history_factory_config机制,为你展示了一套完整的多租户多会话隔离存储方案。文章不仅详细解析了ConfigurableFiel
- DeepSeek打破AI天花板:MoE架构+RL推理,效率提升5倍的底层逻辑
m0_74825409
面试学习路线阿里巴巴人工智能架构
文章目录一、引言二、MoE架构:高效计算的核心支撑(一)MoE架构概述(二)DeepSeekMoE架构的创新点(三)MoE架构的代码实现示例三、RL推理:智能提升的关键驱动(一)RL推理概述(二)R1的训练流程(三)RL推理中的关键技术(四)RL推理的代码实现示例四、MoE架构与RL推理的结合:效率提升的奥秘(一)计算效率的提升(二)推理能力的增强(三)整体性能的飞跃五、结论与展望《DeepSee
- 基于改进扩散模型与注意力机制的影像到转基因数据预测系统
基于改进扩散模型与注意力机制的影像到转基因数据预测系统1.项目概述本系统利用改进的扩散模型结合注意力机制,从医学影像中预测转基因数据。系统采用PyTorch框架实现,包含数据预处理、模型架构、训练流程和评估指标等完整模块。importtorchimporttorch.nnasnnimporttorch.nn.functionalasFimporttorch.optimasoptimfromtorc
- Nodejs源码解析之module
leoleocs
Javascriptnodejs
module管理是Nodejs中比较有特色的部分,官方有详细的文档https://nodejs.org/api/modules.html哪里介绍了一些基本的使用规则,主要的内容如下,文件和模块之间是一一对应关系:使用方法就是require,后续源码解析中会详细介绍什么是require,以及如何实现的。文件的名字就是一个id,也就是标志符。如何访问和被确认为主模块:简单的说就是被nodejs启动的模
- 全平台QQ聊天数据库解密项目常见问题解决方案
管旭韶
全平台QQ聊天数据库解密项目常见问题解决方案qq-win-db-keyQQNT/WindowsQQ聊天数据库解密项目地址:https://gitcode.com/gh_mirrors/qq/qq-win-db-key项目基础介绍本项目是一个开源项目,旨在为用户提供全平台QQ聊天数据库的解密方法。项目主要使用Python、JavaScript和C++等编程语言实现。新手常见问题及解决步骤问题一:如何
- RAG技术栈详解:构建智能问答系统的核心组件
认知超载
AI人工智能
本文深度剖析RAG(Retrieval-AugmentedGeneration)技术栈的核心构成,助你快速搭建企业级知识增强系统一、RAG技术架构全景图二、核心组件技术选型1.检索模块(Retriever)向量数据库主流选择:Pinecone、Milvus、Qdrant、Weaviate新兴势力:ChromaDB(开源轻量级)、腾讯云向量数据库嵌入模型(Embedding)OpenAItext-e
- MapReduce01:基本原理和wordCount代码实现
冬至喵喵
大数据mapreduce
本篇文章中,笔者记录了自己对于MapReduce的肤浅理解,参考资料主要包括《大数据Hadoop3.X分布式处理实战》和网络视频课程。下文介绍了MapReduce的基本概念、运行逻辑以及在wordCount代码示例。一、MapReduce概述1.概述google为解决其搜索引擎中的大规模网页数据的并行化处理问题,设计了MapReduce,在发明MapReduce之后首先用其重新改写了搜索引擎中we
- Spring MVC 详解
蟒蛇boy
springmvcjava
在JavaWeb开发中,SpringMVC是一个强大而广泛使用的框架,它为构建高效、可维护的企业级应用提供了坚实的基础。本文将深入介绍SpringMVC,并提供示例代码帮助你更好地理解其工作原理。一、SpringMVC简介SpringMVC是Spring框架的一个模块,全称为SpringWebMVC。它实现了模型-视图-控制器(MVC)设计模式,将应用程序分为三个主要部分:模型(Model)、视图
- ollama v0.9.4 详解:联网功能、模型目录自定义及macOS性能优化全面升级
近年来,随着人工智能技术的快速发展,模型管理与调用变得尤为重要。作为一款备受关注的本地AI模型管理工具,Ollama在最新发布的v0.9.4版本中带来了多项重磅改进和全新功能,提升了用户体验和应用场景的灵活性。本文将深入解析Ollamav0.9.4版本的功能亮点、技术改进以及实用操作指南,帮助广大开发者和AI爱好者全面掌握这款工具的最新动态。一、版本概述Ollamav0.9.4版本于2025年7月
- 软件测试【理论篇】02:什么是白盒测试
白盒测试(White-boxTesting),又称结构测试或透明盒测试,是一种基于被测系统内部代码结构、逻辑实现细节的软件测试方法。其核心是通过分析程序的源代码、逻辑路径、控制流等内部特征,设计测试用例以验证代码的正确性、完整性及可靠性。一、白盒测试的核心思想白盒测试将软件视为一个“透明的盒子”,测试人员需了解程序的内部结构(如代码逻辑、函数调用关系、条件判断分支等),通过覆盖代码的执行路径、逻辑
- Spring Cloud Config 配合 Spring Cloud Bus 实现分布式配置自动刷新详解
( •̀∀•́ )920
springcloudjava1024程序员节
SpringCloudConfig配置刷新机制详解在分布式系统中,配置的集中管理尤为重要。SpringCloudConfig提供了基于Git仓库的集中化配置管理方案,而在配置更新后,如何让服务动态刷新而无需重启呢?这就需要利用SpringCloudConfig的配置刷新机制以及SpringCloudBus的消息传播能力。本文将详细讲解如何通过/actuator/bus-refresh接口,实现各个
- MySQL(114)如何进行数据库负载均衡?
辞暮尔尔-烟火年年
MySQL数据库mysql负载均衡
为了进行数据库负载均衡,我们可以使用SpringBoot和MySQL,并结合AbstractRoutingDataSource来实现数据源的动态切换。下面的实现包括配置多数据源、定义数据源上下文和实现负载均衡策略(如轮询和随机)。项目依赖首先在pom.xml中添加必要的依赖:org.springframework.bootspring-boot-starter-data-jpamysqlmysql
- 深度学习学习经验——卷积神经网络(CNN)
Linductor
深度学习学习经验深度学习学习cnn
卷积神经网络卷积神经网络(CNN)1.卷积神经网络的基本组成2.卷积操作3.激活函数(ReLU)4.池化操作5.全连接层6.卷积神经网络的完整实现项目示例项目目标1.加载数据2.卷积层:图像的特征探测器2.1第一个卷积层3.激活函数:增加非线性4.池化层:信息压缩器5.多层卷积和池化:逐层提取更高层次的特征6.全连接层:分类器7.模型训练和测试完整的项目示例代码总结卷积神经网络(CNN)卷积神经网
- 用鸿蒙打造真正的跨设备数据库:从零实现分布式存储
网罗开发
HarmonyOS实战源码实战harmonyos数据库分布式
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 【V5.0 - 视觉篇】AI的“火眼金睛”:用OpenCV量化“第一眼缘”,并用SHAP验证它的“审美”
爱分享的飘哥
AI人工智能opencv计算机视觉
系列回顾:在上一篇《给AI装上“写轮眼”:用SHAP看穿模型决策的每一个细节》中,我们成功地为AI装上了“透视眼镜”,看穿了它基于数字决策的内心世界。但一个巨大的问题暴露了:它的世界里,还只有数字。它能理解“时长60秒”,却无法感受画面的震撼。它是一个强大的“盲人数学家”。计算机视觉我们没有必要为每个视频进行切帧,可以针对开头的视频或者中间关键点视频进行切帧,让计算机识别。承上启下:“现在,我们来
- SpringCloud系列(45)--SpringCloud Bus简介
Ken_1115
springcloudspringcloud
1、什么是SpringCloudBusSpringCloudBus是用来将分布式系统的节点与轻量级消息系统链接起来的框架,它整合了Java的事件处理机制和消息中间件的功能,SpringCloudBus目前支持RabbitMQ和Kafka。SpringCloudBus配合SpringCloudConfig使用可以实现配置的动态刷新。2、SpringCloudBus能做什么SpringCloudBus
- 【PHP开发900个实用技巧】405.API限流技术:Redis实现令牌桶算法的高级用法
精通代码大仙
PHP开发900个实用技巧phpredis算法程序员创富
百万并发下的生存法则:用Redis+Lua构建坚不可摧的API流量防线!本文将揭示令牌桶算法在PHP高并发场景的核心实现技巧,包括Lua原子操作、动态策略配置与深度避坑指南,让你的API从此从容应对流量风暴。API限流技术:Redis实现令牌桶高级用法01.令牌桶原理解析02.Redis为何是最强拍档03.PHP实战四步曲3.1Lua脚本原子操作3.2对象封装技巧3.3动态参数配置3.4平滑突发流
- Spring Cloud Bus 服务总线,实现全局广播/定点通知
扛麻袋的少年
#SpringCloudspringcloudjavaspringboot
本文目录:写在开头环境说明1.了解SpringCloudBus1.1Bus何方神圣(Bus是什么)1.2Bus原理2.Bus的两种设计思想2.1触发客户端2.2触发服务端2.3如何选型3.环境搭建4.Bus动态刷新全局广播配置4.1集群版客户端组建4.2服务端配置中心/客户端pom引入Bus总线依赖4.3服务端配置中心application.yml修改(添加rabbitmq相关配置)4.4客户端a
- Swift中常见的面试题
~废弃回忆 �༄
swiftSwift面试题Swift常见面试题Swift面试题总结
1.Swift与OC相比有什么优势?Swift是强类型语言,注重值类型,有类型推断,安全性高Swift的语法更简洁,使用起来方便,支持函数式编程Swift拥有更强大的特性,它有元组类型、支持可选类型(optional)、支持运算符重载、支持泛型、支持静态/动态派发,协议不仅可以被类实现还可以被struct和enum实现Swift支持命名空间、函数支持默认参数Swift的错误处理机制更完善oc的优点
- 计算机视觉 OpenCV Android | Mat像素操作(图像像素的读写、均值方差、算术、逻辑等运算、权重叠加、归一化等操作)...
凌川江雪
本文目录1.像素读写2.图像通道与均值方差计算3.算术操作与调整图像的亮度和对比度4.基于权重的图像叠加5.Mat的其他各种像素操作1.像素读写Mat作为图像容器,其数据部分存储了图像的像素数据,我们可以通过相关的API来获取图像数据部分;在获取图像数据的时候,知道Mat的类型与通道数目关重要,根据Mat的类型与通道数目,开辟适当大小的内存空间,然后通过get方法就可以循环实现每个像素点值的读取、
- Ubuntu22+ROS2+QtCreator+Ros_Qtc_Plugin开发环境搭建
ZPC8210
ROSpythongithubgit
Ubuntu22+ROS2+QtCreator+Ros_Qtc_Plugin开发环境搭建1.写在前面最近重装了ubuntu22.04,被告知ubuntu22已经不支持ROS1了,想着ROS2毕竟是大势所趋,所以安装了ROS2准备进行相应的学习开发。折腾了两天,没发现一款好用的、适合ROS2开发的IDE。之前开发ROS1程序时一直用的QTC,我本以为QTC应该还没有对应的ROS2插件,没想到网上查找
- 筑牢电力网安防线:密码技术应用全景
南京首传信安科技有限公司
密码应用密码学电力安全
密码技术在电力行业的应用是保障国家关键基础设施安全的核心环节。随着智能电网、新能源接入、电力物联网的发展,密码技术已深度融入电力系统的发、输、变、配、用、调、管等各个环节,为电力系统的安全稳定运行、数据机密性、完整性和身份真实性提供保障。一、主要应用领域1.网络与通信安全(基础保障)通信加密:对电力调度数据网、广域测量系统、配电自动化系统、用电信息采集系统等关键网络中的通信数据进行加密(如采用IP
- Python Day58
别勉.
python机器学习python信息可视化数据分析
Task:1.时序建模的流程2.时序任务经典单变量数据集3.ARIMA(p,d,q)模型实战4.SARIMA摘要图的理解5.处理不平稳的2种差分a.n阶差分—处理趋势b.季节性差分—处理季节性建立一个ARIMA模型,通常遵循以下步骤:数据可视化:观察原始时间序列图,判断是否存在趋势或季节性。平稳性检验:对原始序列进行ADF检验。如果p值>0.05,说明序列非平稳,需要进行差分。确定差分次数d:进行
- Python Day56
别勉.
python机器学习python开发语言
Task:1.假设检验基础知识a.原假设与备择假设b.P值、统计量、显著水平、置信区间2.白噪声a.白噪声的定义b.自相关性检验:ACF检验和Ljung-Box检验c.偏自相关性检验:PACF检验3.平稳性a.平稳性的定义b.单位根检验4.季节性检验a.ACF检验b.序列分解:趋势+季节性+残差记忆口诀:p越小,落在置信区间外,越拒绝原假设。1.假设检验基础知识a.原假设与备择假设原假设(Null
- Python Day57
别勉.
python机器学习python开发语言
Task:1.序列数据的处理:a.处理非平稳性:n阶差分b.处理季节性:季节性差分c.自回归性无需处理2.模型的选择a.AR§自回归模型:当前值受到过去p个值的影响b.MA(q)移动平均模型:当前值收到短期冲击的影响,且冲击影响随时间衰减c.ARMA(p,q)自回归滑动平均模型:同时存在自回归和冲击影响时间序列分析:ARIMA/SARIMA模型构建流程时间序列分析的核心目标是理解序列的过去行为,并
- Python Day44
别勉.
python机器学习python开发语言
Task:1.预训练的概念2.常见的分类预训练模型3.图像预训练模型的发展史4.预训练的策略5.预训练代码实战:resnet181.预训练的概念预训练(Pre-training)是指在大规模数据集上,先训练模型以学习通用的特征表示,然后将其用于特定任务的微调。这种方法可以显著提高模型在目标任务上的性能,减少训练时间和所需数据量。核心思想:在大规模、通用的数据(如ImageNet)上训练模型,学习丰
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号