You are given a 0-indexed array nums
of length n
.
The distinct difference array of nums
is an array diff
of length n
such that diff[i]
is equal to the number of distinct elements in the suffix nums[i + 1, ..., n - 1]
subtracted from the number of distinct elements in the prefix nums[0, ..., i]
.
Return the distinct difference array of nums
.
Note that nums[i, ..., j]
denotes the subarray of nums
starting at index i
and ending at index j
inclusive. Particularly, if i > j
then nums[i, ..., j]
denotes an empty subarray.
Example 1:
Input: nums = [1,2,3,4,5] Output: [-3,-1,1,3,5] Explanation: For index i = 0, there is 1 element in the prefix and 4 distinct elements in the suffix. Thus, diff[0] = 1 - 4 = -3. For index i = 1, there are 2 distinct elements in the prefix and 3 distinct elements in the suffix. Thus, diff[1] = 2 - 3 = -1. For index i = 2, there are 3 distinct elements in the prefix and 2 distinct elements in the suffix. Thus, diff[2] = 3 - 2 = 1. For index i = 3, there are 4 distinct elements in the prefix and 1 distinct element in the suffix. Thus, diff[3] = 4 - 1 = 3. For index i = 4, there are 5 distinct elements in the prefix and no elements in the suffix. Thus, diff[4] = 5 - 0 = 5.
Example 2:
Input: nums = [3,2,3,4,2] Output: [-2,-1,0,2,3] Explanation: For index i = 0, there is 1 element in the prefix and 3 distinct elements in the suffix. Thus, diff[0] = 1 - 3 = -2. For index i = 1, there are 2 distinct elements in the prefix and 3 distinct elements in the suffix. Thus, diff[1] = 2 - 3 = -1. For index i = 2, there are 2 distinct elements in the prefix and 2 distinct elements in the suffix. Thus, diff[2] = 2 - 2 = 0. For index i = 3, there are 3 distinct elements in the prefix and 1 distinct element in the suffix. Thus, diff[3] = 3 - 1 = 2. For index i = 4, there are 3 distinct elements in the prefix and no elements in the suffix. Thus, diff[4] = 3 - 0 = 3.
Constraints:
1 <= n == nums.length <= 50
1 <= nums[i] <= 50
class Solution {
public:
vector distinctDifferenceArray(vector& nums) {
int n = nums.size();
vector res;
vector t(n + 1, 0);
unordered_set st;
for(int i = n - 1;i > 0;i --){
st.insert(nums[i]);
t[i] = st.size();
}
st.clear();
for(int i = 0;i < n; i ++){
st.insert(nums[i]);
res.push_back(int(st.size())-t[i + 1]);
}
return res;
}
};